
5/20/08 Lecture 14 outline

• Recall from last time

∂

∂t
ρ(~x, t) + ∇ ·~j = 0, ρ ≡ ψ∗ψ, ~j =

h̄

2mi
(ψ∗ ∇ψ − ψ∇ψ∗).

Today we’ll continue to consider non-bound particles, and scattering off step potentials.

The reflection and transmission coefficients give the probability of the incident wave being

reflected and transmitted, respectively,

R = JR/JI , T = JT /JI ,

and flux conservation ensures that R+ T = 1.

• Simplest example of scattering from a step potential,

V (x) = V0θ(x), θ(x) ≡
{

0 x < 0
1 x > 0.

We will solve the eigenvalue equation Hψ = Eψ. Suppose that there is an incoming flux

from the left, with energy E. The wavefunction is then of the form

ψ1(x) = eik1x + Ae−ik1x,

where 1, is for the x ≤ 0 region. k1 is given by h̄k1 =
√

2mE. In region 2, which is x ≥ 0,

we have

ψ2(x) = Beik2x

where h̄k2 =
√

2m(E − V0). We chose the solution so that the wave only moves to the

right in region 2, because we take the particle to be incoming from x = −∞.

The A term is the reflected part of the wave, ψR, and the B term is the transmitted

part of the wave, ψT .

We solve for A and B by noting that the wavefunction must be continuous. Moreover,

for a smooth potential, the derivative of the wavefunction must also be continuous. So

1 + A = B ik1(1 − A) = −k2B

gives

A =
k1 − k2

k1 + k2

B =
2k1

k1 + k2
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The flux in region 1 is

J =
h̄

2im
(ψ∗ψ′ − ψ∗′ψ) =

h̄k1

m
(1 − |A|2)

The flux in region 2 is

J =
h̄k2

m
|B|2

Where
h̄k1

m
|A|2 =

h̄k1

m

(

k1 − k2

k1 + k2

)2
h̄k2

m
|B|2 =

h̄k1

m

4k1k2

(k1 + k2)2
.

The reflection and transmission coefficients are

R = JR/JI = |A|2, T = JT /JI =
k2

k1

|B|2,

where flux conservation ensures that R + T = 1.

If E < V0, then instead get ψ2(x) = Be−κ2x, where h̄κ2 =
√

2m(V0 −E). In that

case, R = 1. Find also B = 2k1/(k1 + iκ2).

• Comments on delta function potential, and how the ψ′ matching is affected (useful

for the HW): integrate the S.E. across the delta function potential to get

− h̄2

2m

dψ

dx

∣

∣

x+ε

x−ε
+

∫ x+ε

x−ε

V (x)ψ(x) = 0,

where the second term only contributes if V (x) has a delta function. Then the above

equation shows that ψ′ has a specific discontinunity across that x. E.g. if V (x) = −aV0δ(x)

we get −(h̄2/2m)(dψ/dx)|ε
−ε = aV0ψ(0).

• Step well V (x) = −V0(θ(x − a) − θ(x + a)). For E > 0, oscillating solutions in 3

regions, work out matching of coefficients by matching u(x)′/u(x) across the boundaries.

Find that there is no reflection when the distance 4a is an integer number of wavelengths:

destructive interference of waves reflected at two edges (again, similar to optics).

• Potential barrier: V (x) = V0(θ(x− a) − θ(x + a)). Consider E < V0. Solution for

x < −a is u = eikx + Ae−ikx, for |x| < a is u = Ce−κx +De+κx and for x > a is Beikx.

Here k =
√

2mE/h̄ and κ =
√

2m(V0 − E)/h̄. Matching gives

T = |B|2 =
(2kκ)2

(k2 + κ2)2 sinh2 2κa+ (2kκ)2
.
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This illustrates tunneling: T 6= 0 even though E < V0! Can plot T as a function of E/V0.

In the limit where the tunneling is very small, i.e. κa� 1, get

T ≈ 16E(V0 − E)

V 2
0

e−4κa.

This exponential is characteristic of tunneling, and similar to the skin-depth effect in

time dependent electric and magnetic fields in a conductor. More generally, T ∼ |B|2 ∼
exp(−2h̄−1

∫

barrier

√

2m(V (x) − E)).

Example: decay of heavy elements by α tunneling in nucleus. Model the potential as

V (r) =

{

0 if r < r0
Z1Z2

r
if r > r0

where r0 is the radius of the nucleus, and Z1 = 2 is the charge of the alpha particle (2

protons and 2 neutrons) and Z2 = Z−2 is the remaining charge of the nucleus. The energy

E of the emitted particles is such that E < Z1Z2/r0. For example, Z1 = 2, Z2 − 2 ≈ 90,

and r0 ≈ 10−15m gives barrier height Z1Z2/r0 ≈ 25 MeV. But the emitted alpha particles

only have E of the order of 5 to 10 MeV. And yet they escape – thanks to tunneling.
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