5/20/08 Lecture 14 outline

e Recall from last time
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Today we’ll continue to consider non-bound particles, and scattering off step potentials.
The reflection and transmission coefficients give the probability of the incident wave being

reflected and transmitted, respectively,
R = Jgr/Jr1, T=Jr/Jp,

and flux conservation ensures that R+ 1T = 1.
e Simplest example of scattering from a step potential,

V(z) = Vpb(x), 0(z) = {(1) i i 8

We will solve the eigenvalue equation Hvy = FE1. Suppose that there is an incoming flux

from the left, with energy E. The wavefunction is then of the form
¢1(x) — eiklm -I-Ae_iklm,

where 1, is for the x < 0 region. k; is given by hk; = v2mUE. In region 2, which is z > 0,
we have

a(x) = Be't=?

where hky = \/m . We chose the solution so that the wave only moves to the
right in region 2, because we take the particle to be incoming from x = —o0.

The A term is the reflected part of the wave, g, and the B term is the transmitted
part of the wave, .

We solve for A and B by noting that the wavefunction must be continuous. Moreover,

for a smooth potential, the derivative of the wavefunction must also be continuous. So
1+A=8RB iki1(1—A)=—kyB

gives
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The flux in region 1 is
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The flux in region 2 is
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The reflection and transmission coeflicients are
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where flux conservation ensures that R + 71 = 1.

If B < Vp, then instead get ¥o(z) = Be 2% where hky = \/m. In that
case, R = 1. Find also B = 2ky/(k1 + ik2).

e Comments on delta function potential, and how the ¢’ matching is affected (useful

for the HW): integrate the S.E. across the delta function potential to get
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where the second term only contributes if V' (z) has a delta function. Then the above
equation shows that v’ has a specific discontinunity across that x. E.g. if V(z) = —aVyd(z)
we get —(h?/2m)(dy/dx)|c . = aVyup(0).

e Step well V(z) = =Vp(0(x — a) — O(x + a)). For E > 0, oscillating solutions in 3
regions, work out matching of coefficients by matching u(z)’ /u(z) across the boundaries.
Find that there is no reflection when the distance 4a is an integer number of wavelengths:
destructive interference of waves reflected at two edges (again, similar to optics).

e Potential barrier: V(z) = Vo(6(x — a) — 6(z + a)). Consider E < Vj. Solution for
T < —aisu=e* + Ae”" for |z| < a is u = Ce™"® + Det"® and for x > a is Be'**.

Here k = v2mE/h and k = \/2m(Vy — E)/h. Matching gives
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This illustrates tunneling: 7' # 0 even though E < V! Can plot T as a function of E/Vj.

In the limit where the tunneling is very small, i.e. ka > 1, get

—4Kka
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This exponential is characteristic of tunneling, and similar to the skin-depth effect in
time dependent electric and magnetic fields in a conductor. More generally, T ~ |B|? ~

exp(—2n" [, \/2m(V(z) — E)).
Example: decay of heavy elements by a tunneling in nucleus. Model the potential as

0 ifr <rg
Vi(r) = { Z1Zz ifp >y

where rg is the radius of the nucleus, and Z; = 2 is the charge of the alpha particle (2
protons and 2 neutrons) and Zy = Z —2 is the remaining charge of the nucleus. The energy
E of the emitted particles is such that F < Z1Z5/rg. For example, Z; = 2, Zy — 2 ~ 90,
and rg ~ 10~1%m gives barrier height Z; Z5 /rg ~ 25 MeV. But the emitted alpha particles
only have E of the order of 5 to 10 MeV. And yet they escape — thanks to tunneling.



