
5/5/08 Lecture 11 outline

• 1d Schrodinger equation for general potential. H = p̂2/2m + V (x̂). To solve the

equation, we want to solve for the energy eigenstates and eigenvalues, H|E〉 = E|E〉. We

write this in the x-basis (position space) as 〈x|H|E〉 = E〈x|E〉. Defining 〈x|E〉 ≡ ψE(x),

this becomes:
(

−
h̄2

2m

d2

dx2
+ V (x)

)

ψE(x) = EψE(x),

because p̂→ −ih̄ d
dx

in position space. We solve this equation to determine the eigenvalues

E and the eigenstates ψE(x). The solution ψE(x) is always a continuous function. It’s

derivative ψ′

E(x) is continuous also, unless the potential has an infinite jump somewhere.

• Example of particle in a box, V (x) = 0 for 0 < x < L and infinite outside that

range. Solutions are labeled by n = 1, 2, 3 . . .,

ψEn
(x) ≡ un(x) =

√

2

L
sin

(nπx

L

)

, En =
n2π2h̄2

2mL2
.

Discuss also the solutions and their parity symmetry if we shift x so that x = 0 is the

midpoint of the box.

Groundstate has E1 6= 0, related to uncertainty principle.

• The energy levels are quantized, because the particle is bound in the well. This is

general. As long as E < V (|x| → infty), then ψ(|x| → ∞) → 0. Then the particle is

bound in the well, and the energy levels are quantized. Qualitative example of particle in

a finite well.

• the En are the possible outcomes of experiments if the energy is measured. Suppose

that the system is in the state ψ(x) = un(x). Measurement of the energy will then yield

the corresponding En with 100% probability. On the other hand, the position is uncertain.

E.g. the probability to measure in range from x1 to x2 is

∫ x2

x1

|un(x)|2dx =
x2 − x1

L
−

1

2πn

(

sin(
2πnx2

L
) − sin(

2πnx1

L
)

)

.

First term is what we’d expect on average classically. The second term goes away for

n→ ∞, which is an example of the correspondence principle. It is straightforward to work

out 〈x〉, 〈p〉, 〈x2〉, 〈p2〉 etc.. You will check these and the uncertainty principle in a HW

problem.
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The un form an orthonormal and complete basis of functions with the correct BCs:

any wavefunction can be expanded as

ψ(x) =

∞
∑

n=1

cnun(x) un ≡

√

2

L
sin

nπx

L
,

where

cn =

∫ L

0

dx un(x)∗ψ(x).

Here is the physics: if one measures the energy, the probability of measuring En is |cn|
2.

If the wavefunction is properly normalized,
∫

∞

−∞
|ψ(x)|2dx = 1, then the above expression

for cn will imply that
∑

n |cn|
2 = 1, so the energy probabilities properly sum to unity. The

average expectation value of the energy is

〈E〉 =
∑

n

En|cn|
2 = 〈H〉 =

∫

∞

−∞

ψ∗(x)Hψ(x).

After measuring energy En, the state of the system is changed: now it is fully in the

corresponding eigenstate, ψ(x) = un(x). Subsequent measurement of energy will give the

same En, with 100% probability. This is a very important and general aspect of quan-

tum mechanics, true for any observable: the initial wavefunction is in a superposition of

eigenvectors of the observable. The coefficients of the superposition give the probability of

measuring the corresponding eigenvalue. The measurement changes the state of the sys-

tem: immediately afterward a measurement, the state is not in the superposition anymore,

but rather it is fully in the eigenstate corresponding to the measured eigenvalue.

• The time dependence of the wavefunction is given by the Schrodinger equation,

ih̄
∂

∂t
ψ(x, t) = Hψ.

Using the above form, we can immediately determine the solution of the Schrodinger

equation. The wavefunction, as a function of time, is given by

ψ(x, t) =
∑

n

cne
−iEnt/h̄ψn(x), where cn =

∫

dx ψ∗

n(x)ψ(x, t = 0).

Once we’ve expanded the initial wavefunction ψ(x, t = 0) in terms of the energy eigen-

states (which is a useful thing to do in any case!), we can immediately write down the

time dependence, as above! The S.E. is a partial differential equation, in x and t, and
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the solution above is the statement that we can use separation of variables, along with

superposition (since the equation is linear).

• Even though the above t dependence looks so simple, it leads to very non-trivial

t dependence when we compute different quantities, e.g. the position probability den-

sity ρ(x, t) = |ψ(x, t)|2. This leads to nontrivial t dependence in general for measured

quantities, and also for expectation values. We showed in the last lecture how quantum

expectation values reproduce the classical equations of motion. For example, we have

d

dt
〈X〉 =

1

ih̄
〈[X,H]〉 = 〈P 〉/m

where in the last line we used H = P 2/2M + V (X). Likewise,

d

dt
〈P 〉 =

1

ih̄
〈[P,H]〉 = 〈−

∂V (X)

∂X
〉.

• Note that if the system is in an energy eigenstate, ψ(x, t) = e−iEnt/h̄ψn(x), then

all expectation values like 〈xn〉 and 〈pn〉 are time independent. This is called a stationary

state.
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