5/1/07 Lecture 9 outline

e Recall the eigenvalue equation for the allowed energies of a system,

The solutions of this equation (with appropriate boundary conditions) form a complete
basis for possible wavefunctions. Any wavefunction (with appropriate BCs) can be written

as a linear combination of them:
P(x) = ZAnzpn(a:), where A, = /dmp;kl(a:)w(a:)

The probability of measuring energy E,, is then |4, |?. (After the measurement of some
E,,, the wavefunction collapses ¢ — 1,,.)

We discussed this last week for the specific example of a particle in a box, but all the
above statements are quite general.

e The time dependence of the wavefunction is given by the Schrodinger equation,
mgw(a: t) = Hy
ot T

Using the above form, we can immediately determine the solution of the Schrodinger

equation. The wavefunction, as a function of time, is given by
Y(x,t) = Z ApeEnt/he (2), where A, = /d:)s Yo (x)Y(z,t = 0).

Once we've expanded the initial wavefunction ¢ (z,t = 0) in terms of the energy eigen-
states (which is a useful thing to do in any case!), we can immediately write down the
time dependence, as above! The S.E. is a partial differential equation, in x and ¢, and
the solution above is the statement that we can use separation of variables, along with
superposition (since the equation is linear).

e Even though the above t dependence looks so simple, it leads to very non-trivial
t dependence when we compute different quantities, e.g. the position probability den-
sity p(x,t) = |[¢(z,t)]?. This leads to nontrivial ¢ dependence in general for measured
quantities, and also for expectation values.

e Note that if the system is in an energy eigenstate, 9(x,t) = e~ *Ent/hq) (), then
all expectation values like (z™) and (p™) are time independent. This is called a stationary

state.



e Next topic, the step potential. Suppose

V(z) = Vpb(x), 0(z) = {(1) i i 8

We will solve the eigenvalue equation Hvy = FE1. Suppose that there is an incoming flux
from the left, with energy E. The wavefunction is then of the form
wl(x) — eiklx‘ +Re—iklx,
where 1, is for the z < 0 region. k; is given by hk; = v2mFE. In region 2, which is x > 0,
we have
Vo (z) = Tetr2?

where hky = \/2m(E — Vj). We chose the solution so that the wave only moves to the right
in region 2, because we take the particle to be incoming from x = —oc. The coefficient | R|?
is the reflection probability coefficient and |T'|? is the transmission probability coefficient
(here I'm following the notation of Gas. - but note that many other books call his R a
coefficient B and his T a coefficient C, and reserve the names R and T for what Gas is
Calling |f€|2 and |T|21 Rothers = |RGas|2 and Tothers = |TGas|2-

We solve for R and T by noting that the wavefunction must be continuous. Moreover,

for a smooth potential, the derivative of the wavefunction must also be continuous. So

1+R=T  iky(1-T)=—koT

gives
k1 — ko T_ 2k,
N k1 + ko N k1 + ko
The flux in region 1 is
hk1
*/ 1 _
= ol — ) = (1| RP)
The flux in region 2 is hi
J=—2|T
m

Where

hky Lo ki (ki—ke\?  hky o Bk 4dkiks
—|R]" = 71" = 5
m m \ k1 + ks m m (k1 + k2)
If E < Vj, then instead get ¥q(x) = Te™"2% where hko = /2m(Vy — E). In that
case, |R|*> = 1. Find also T = 2ky /(ky + iks).
e Comments on delta function potential, and how the ¢/’ matching is affected: integrate

the S.E. across the delta function potential to get
h2 d rte xr+€
St [ v =0

2m dz o=
where the second term only contributes if V(x) has a delta function. Then the above

—€

equation shows that v’ has a specific discontinunity across that z.



