
5/1/07 Lecture 9 outline

• Recall the eigenvalue equation for the allowed energies of a system,

Hψn ≡
(

− h̄2

2m

d2

dx2
+ V (x)

)

ψn = Enψn.

The solutions of this equation (with appropriate boundary conditions) form a complete

basis for possible wavefunctions. Any wavefunction (with appropriate BCs) can be written

as a linear combination of them:

ψ(x) =
∑

n

Anψn(x), where An =

∫

dxψ∗

n(x)ψ(x).

The probability of measuring energy En is then |An|2. (After the measurement of some

En, the wavefunction collapses ψ → ψn.)

We discussed this last week for the specific example of a particle in a box, but all the

above statements are quite general.

• The time dependence of the wavefunction is given by the Schrodinger equation,

ih̄
∂

∂t
ψ(x, t) = Hψ.

Using the above form, we can immediately determine the solution of the Schrodinger

equation. The wavefunction, as a function of time, is given by

ψ(x, t) =
∑

n

Ane
−iEnt/h̄ψn(x), where An =

∫

dx ψ∗

n(x)ψ(x, t = 0).

Once we’ve expanded the initial wavefunction ψ(x, t = 0) in terms of the energy eigen-

states (which is a useful thing to do in any case!), we can immediately write down the

time dependence, as above! The S.E. is a partial differential equation, in x and t, and

the solution above is the statement that we can use separation of variables, along with

superposition (since the equation is linear).

• Even though the above t dependence looks so simple, it leads to very non-trivial

t dependence when we compute different quantities, e.g. the position probability den-

sity ρ(x, t) = |ψ(x, t)|2. This leads to nontrivial t dependence in general for measured

quantities, and also for expectation values.

• Note that if the system is in an energy eigenstate, ψ(x, t) = e−iEnt/h̄ψn(x), then

all expectation values like 〈xn〉 and 〈pn〉 are time independent. This is called a stationary

state.

1



• Next topic, the step potential. Suppose

V (x) = V0θ(x), θ(x) ≡
{

0 x < 0
1 x > 0.

We will solve the eigenvalue equation Hψ = Eψ. Suppose that there is an incoming flux

from the left, with energy E. The wavefunction is then of the form

ψ1(x) = eik1x +Re−ik1x,

where 1, is for the x ≤ 0 region. k1 is given by h̄k1 =
√

2mE. In region 2, which is x ≥ 0,

we have

ψ2(x) = Teik2x

where h̄k2 =
√

2m(E − V0). We chose the solution so that the wave only moves to the right

in region 2, because we take the particle to be incoming from x = −∞. The coefficient |R|2
is the reflection probability coefficient and |T |2 is the transmission probability coefficient

(here I’m following the notation of Gas. - but note that many other books call his R a

coefficient B and his T a coefficient C, and reserve the names R and T for what Gas is

calling |R|2 and |T |2: Rothers = |RGas|2 and Tothers = |TGas|2.
We solve for R and T by noting that the wavefunction must be continuous. Moreover,

for a smooth potential, the derivative of the wavefunction must also be continuous. So

1 +R = T ik1(1 − T ) = −k2T

gives

R =
k1 − k2

k1 + k2

T =
2k1

k1 + k2

The flux in region 1 is

J =
h̄

2im
(ψ∗ψ′ − ψ∗′ψ) =

h̄k1

m
(1 − |R|2)

The flux in region 2 is

J =
h̄k2

m
|T |2

Where
h̄k1

m
|R|2 =

h̄k1

m

(

k1 − k2

k1 + k2

)2
h̄k2

m
|T |2 =

h̄k1

m

4k1k2

(k1 + k2)2
.

If E < V0, then instead get ψ2(x) = Te−κ2x, where h̄κ2 =
√

2m(V0 − E). In that

case, |R|2 = 1. Find also T = 2k1/(k1 + iκ2).

• Comments on delta function potential, and how the ψ′ matching is affected: integrate

the S.E. across the delta function potential to get

− h̄2

2m

dψ

dx

∣

∣

x+ε

x−ε
+

∫ x+ε

x−ε

V (x)ψ(x) = 0,

where the second term only contributes if V (x) has a delta function. Then the above

equation shows that ψ′ has a specific discontinunity across that x.
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