
4/24/07 Lecture 7 outline

• Last time we wrote down the Schrodinger equation. Write it out again, for 3d:

ih̄
∂

∂t
ψ(~x, t) = Hψ ≡

(

−
h̄2

2m
∇2 + V (~x)

)

ψ(~x, t).

• Make some aside comments on some general consequences. First aside: particles

don’t disappear in QM. Indeed, probability density ρ = |ψ(~x, t)|2, and probability current

density ~J = h̄
2mi

(ψ∗ ∇ψ− (∇ψ∗)ψ) satisfies a conservation equation, ∂ρ
∂t

+ ∇ · ~J = 0 (since

the potential V is real). This follows from the Schrodinger equation:

∂ρ

∂t
=
∂ψ∗

∂t
ψ + ψ∗

∂ψ

∂t
=

1

ih̄
(−(Hψ)∗ψ + ψ∗Hψ) = −∇ · ~J.

• For general real potential V , can show (using Schrodinger equation)

d

dt
〈~x〉 =

∫

d3x~x
∂ρ

∂t
=

∫

d3x~J =
1

m
〈~p〉.

d

dt
〈~p〉 =

d

dt

∫

d3xψ∗
h̄

i
∇ψ = −

∫

ψ∗ ∇V ψ = 〈 ~F 〉.

Which is are examples of Ehrenfest’s theorem: the expectation values satisfy the classical

relations (modulo caveats below). More generally, for any observable u, the Schrodinger

equation implies
d

dt
〈u〉 = 〈

∂

∂t
u〉 +

1

ih̄
〈[u,H]〉,

which is of the same form as the statements about classical mechanics, where the statement

applies to the expectation values, and the Poisson brackets are replaced with commutators,

{A,B} →
1

ih̄
[A,B] where [A,B] ≡ AB −BA.

This is a general statement about quantum mechanics. In particular, get

d

dt
〈p〉 = 〈−

∂V

∂x
〉

which is similar to the classical equation of motion, except that in general

〈F (x)〉 = 〈
−∂V

∂x
〉 6= F (〈x〉) = −

∂

∂〈x〉
V (〈x〉).

This is approximately true (leading the Ehrenfest’s theorem) only if the potential is slowly

varying and ∆x is not too big.
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• In QM, we replace observables, like position, momentum, energy, angular momen-

tum, etc. with linear operators. These operators act on the wavefunction. We have already

seen this with E → ih̄ ∂
∂t

, which according to the S.E. is E → H. And p → −ih̄ ∂
∂x

. The

general rule is that the Poisson brackets of classical mechanics are replaced with commu-

tators of the operators in quantum mechanics:

[A,B] = ih̄{A,B},

where [A,B] ≡ AB−BA. In your HW, you will do some checks that this makes sense. In

particular,

[x, px] = ih̄, [y, py] = ih̄, [z, pz] = ih̄.

The classical limit is h̄→ 0, where the operators commute.

• When we measure the observable, we measure an eigenvalue of the corresponding

operator. The measurement process alters the state of the system: the final state in the

eigenvector corresponding to the measured eigenvalue.

• If two operators do not commute, such as position and momentum above, they

both can not be measured simultaneously. Leads to the Heisenberg uncertainty principle,

∆x∆px ≥ h̄/2.

• Example: free particle in a box, between x = 0 and x = L. Energy eigenvectors

un(x) =
√

2

L
sin(nπx/L), with eigenvalue En = h̄2π2n2/2mL2, for n = 1, 2, 3, . . .. Note

groundstate energy E1 6= 0, connect to uncertainty principle.
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