4/24/07 Lecture 7 outline

e Last time we wrote down the Schrodinger equation. Write it out again, for 3d:
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e Make some aside comments on some general consequences. First aside: particles
don’t disappear in QM. Indeed, probability density p = |¢(Z,t)|?, and probability current
density J = 2;"”. (* Vip — (Vp*)1) satisfies a conservation equation, % +V-J=0 (since
the potential V' is real). This follows from the Schrodinger equation:
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e For general real potential V', can show (using Schrodinger equation)
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Which is are examples of Ehrenfest’s theorem: the expectation values satisfy the classical
relations (modulo caveats below). More generally, for any observable u, the Schrodinger
equation implies
d 0 1
E<U> = (&W + £<[U7H]>,
which is of the same form as the statements about classical mechanics, where the statement

applies to the expectation values, and the Poisson brackets are replaced with commutators,
1
{A,B} — %[A, B] where [A,B] = AB — BA.
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This is a general statement about quantum mechanics. In particular, get
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which is similar to the classical equation of motion, except that in general
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This is approximately true (leading the Ehrenfest’s theorem) only if the potential is slowly

varying and Az is not too big.



e In QM, we replace observables, like position, momentum, energy, angular momen-
tum, etc. with linear operators. These operators act on the wavefunction. We have already
seen this with £ — ih%, which according to the S.E. is ¥ — H. And p — —iha%. The
general rule is that the Poisson brackets of classical mechanics are replaced with commu-

tators of the operators in quantum mechanics:
[A, B] = ih{A, B},

where [A, B] = AB — BA. In your HW, you will do some checks that this makes sense. In

particular,

[z, pe] = ih, [y, py] =ik, [z,p.] = ih.

The classical limit is h — 0, where the operators commute.

e When we measure the observable, we measure an eigenvalue of the corresponding
operator. The measurement process alters the state of the system: the final state in the
eigenvector corresponding to the measured eigenvalue.

e If two operators do not commute, such as position and momentum above, they

both can not be measured simultaneously. Leads to the Heisenberg uncertainty principle,

AzAp, > h/2.
e Example: free particle in a box, between x = 0 and x = L. Energy eigenvectors
un(z) = /2 sin(nrz/L), with eigenvalue E,, = h*r?n?/2mL?, for n = 1,2,3,.... Note

groundstate energy E; # 0, connect to uncertainty principle.



