6/7/07 Lecture 19 outline
e Consider V(r) = —Ze?/4megr. Define p = \/8u|E|/h*r and \ = % ﬁ =

Zo 2“|—‘§| To account for above asymptotic behaviors, define R(r) = e=#/2p*H(p). The

equation for H(p) is then

20 + 2 A—/F—1
H"(p) + <7+ ~DH(p) + H =0,

Take H(p) =, axp" and plug into above eqn to get

S PR+ 1)(k 4+ 20+ 2)ar + (A — £ — 1 = k)ag) = 0.
k

Set each term to zero, so get recursion relation:

CLk;_|_1_ k—i—g—f—l—)\

ay (k+20+2)(k+1)’

For large k this would imply ax+1/ax — 1/k for k — oo, which would imply the wrong
behavior for large 7 (corresponding to R(r) ~ e*?/2) unless the series terminates.

H(p) must be a polynomial of finite degree, i.e. the recursion relation must truncate
at some ky,qz, SO that ag, . +1 = 0. Define n = kpyop + ¢+ 1. Then A = n. This gives E
in terms of n.

e Summary: E, = —1u(Ze?/dmegh)? -n~? = —Lpuc?(Za)?/n?, where n > £+1. Then
p = 2uZe?r /Areoh®n = 2Zr/nay where ag = h?4meg/pe? = h/pca is the Bohr radius,
numerically ag ~ 0.54. So R, ¢(r) = (Zr/nag)’e=47/"% H, (Zr/nag), where H, ,(p) is
a degree k. = n — £ — 1 polynomial (related to what’s called the associated Laguerre
polynomial, Hy, ¢(p) ~ Li@l_l(p)).

e Count the degeneracy of solutions with £ = FE,,: since k,,q; iS a non-negative
integer, the value of ¢ can go from zero to n — 1. For each ¢ value, there is a 2¢ + 1 fold
degeneracy of L, = mh quantum numbers. (The ¢ degeneracy is related to Lenz vector
A= (L xp—pxL)/2uc+7/r). So the total degeneracy here is

n—1

Z(% +1) =n?

=0
e The radial probability distribution is [ty ¢.m|* ~ r? Ry, ¢(r)?. Draw some plots.
e Put it all together, for Z = 1:

Y100 = (mad) Y27/ a0 groundstate.
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20,0 = (327ra8)_1/2(2 — T/a0>e—r/2ao’
2,10 = (32mag) "2 (r/ag)e™"/?% cos §
¢2,1,ﬂ:1 = :F(647TCL8)_1/2(r/a0)e_r/200 sin Heii¢,

e Consider (rF) = [ drr*™*(R,(r))?. Get e.g. (r) = (3n? — £({ + 1))ag/2Z and
(r=YY = Z/agn®. The simplicity of the last expression is related to the Virial theorem,
which says that if V ~ 7* then (K.E) = §<V>, so £ = %(V} Let’s pause to prove the

Virial theorem. Use
L iw) = (75 H) = 2(T) — 7 VY
ar\ P T g\ P R = " ’

where the last step follows upon writing everything out and using the commutators of
position and momentum. The time derivative of any operator expectation value will vanish
in any energy eigenstate, so the Virial theorem holds in every energy eigenstate.

Note also that, e.g. for £ = n — 1, the probability density is maximum at solution of

a
dr

early era, by using classical mechanics and his (close, but not quite correct) quantization
of L.

e Free particle with angular momentum ¢:

(d L2d e+

(e=2r/maop2n) — () ie. at r = nag. This happens to agree with what Bohr found in the

dr? = rdr r2

)R+k2R:O,

where E = h%k?/2u. The solutions are spherical Bessel functions, R(r) = j;(kr), which
behave as jy(kr) ~ (kr)¢ for r — 0. (There is another solution, R(r) = n,(kr), called the
spherical Neumann function, but it corresponds to the unacceptable behavior ng(kr) ~

(kr)=*=1 for r — 0, so we discard it.). So the general solution is

[e’e) V4
0 0,:6) = [ kD" 37 Cupmir(kr)¥in(0.0).

=0 m=—/¢

e Free particle in an infinite spherical well. The difference from the above is that
the wavefunction must vanish for r > R, where R is the radius of the well. So require
Je(kn¢R) = 0, which is an equation for the k,, . The solutions of this equation requires
working out the zeros of the spherical Bessel functions. For each ¢, there are a discrete
infinite of zeros, labeled by n = 1,2,3.... For kR > /, the solutions are approximately
given by kR ~ (n+ ).

e If time: fun with Stern Gerlach.



