
5/31/07 Lecture 17 outline

• Last time: discussed the eigenkets |`, m〉 of L2 and Lz. Now consider these kets in

position space.

Use spherical coordinates. The |`, m〉 states are independent of the radial coordinate,

r; they depend only on θ and φ. To see why, write ~L = ~x×~p in position space, by replacing

~p → −ih̄∇. Converting to spherical coordinates, get
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In position space the L2 and Lz eigenkets become 〈θ, φ|`, m〉 = Y`,m(θ, φ). Their

definition in terms of their eigenvalue equations, L2Y`,m(θ, φ) = h̄2`(` + 1)Y`,m(θ, φ) and

LzY`,m(θ, φ) = mh̄Y`,m(θ, φ) are well known equations: the Y`,m(θ, φ) are the Spherical

Harmonics, which always enter in solving problems in spherical coordinates. They are

given by Y`,m(θ, φ) ∼ Pm
` (cos θ)eimφ, where Pm

` (u) ∼ (1 − u2)−m/2( d
du

)`−m(1 − u2)` are

associated Legendre polynomials. E.g. Y`,` ∼ sin` θei`φ. For m = 0, they are the ordinary

Legendre polynomials, recall P0(u) = 1, P1(u) = u, P2(u) = 1

2
(3u2 − 1), etc. Draw some

plots. E.g. Y`,` looks as expected for having maximum Lz: it’s rotation is mostly in the

x-y plane, so it’s peak is perpendicular to the ẑ axis. And Y`,0 looks as expected for having

Lz = 0: it’s rotation is mostly in a plane including the ẑ axis, so it looks peaked along

the ẑ axis. Also the ` = 1 is called dipole, as seen from the shape of the L`=1,m, and

` = 2 is called quadropole, as seen from e.g the shape of Y2,1, etc. Mention names for

` = 0, 1, 2, 3 . . . are called the s, p, d, f . . . orbitals.

• The |θ, φ〉 form a complete orthonormal basis:

〈θ′, φ′|θ, φ〉 =
1

sin θ
δ(θ − θ′)δ(φ − φ′)

∫ 2π

0

dφ

∫ π

0

sin θdθ|θ, φ〉〈θ, φ| = 1.

The |`, m〉 similarly form a complete, orthonormal basis:

〈`′, m′|`, m〉 = δ`,`′δm,m′

∞∑

`=0

∑̀

m=−`

|`, m〉〈`, m| = 1.
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Combining these give many standard formulae for the spherical harmonics, e.g. a general

function of θ and φ can be expanded in terms of the spherical harmonics as:

f(θ, φ) ≡ 〈θ, φ|f〉 =

∞∑

`=0

∑̀

m=−`

〈θ, φ|`, m〉〈`, m|f〉 ≡

∞∑

`=0

∑̀

m=−`

Y`,m(θ, φ)f`,m,

where f`,m = 〈`, m|f〉 =
∫

dΩ〈`, m|θ, φ〉〈θ, φ|f〉 =
∫

dΩY`,m(θ, φ)∗f(θ, φ).

• In position space, we replace ~p2 → −h̄2 ∇2. In spherical coordinates, this becomes

~p2 → −h̄2 ∇2 = −h̄2

(
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)
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r +
L2

r2
.

So the angular part of the Laplacian in spherical coordinates is just the L2 operator. This

connects with how the Y`,m(θ, φ) arise in solving differential equations involving ∇2 in

spherical coordinates (as seen e.g. in evaluating the scalar potential in E& M). Indeed, the

general solution of ∇2φ = 0 is

φ =
∞∑

`=0

(A`,mr` +
B`,m

r`+1
)Y`,m(θ, φ).

(In problems with azimuthal rotational symmetry around an axis, which can be taken to

be ẑ, there are only the m = 0 terms.) The very particular form of the r dependent terms

above, i.e. r` and 1/r`+1 are special to solutions of ∇2φ = 0. For other equations, like the

3d energy eigenvalue equation, the r dependence will be different. But the (θ, φ) depen-

dence of any function can be expressed in terms of the Y`,m(θ, φ): that is the statement

that the |`, m〉 form a complete basis.
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