
4/3/07 Lecture 1 outline

• An old question: is light a particle or a wave? In 1800 Young’s double slit experiment

showed interference, suggests light is a wave. Later understood as solution of Maxwell’s

equations. Double slit, intensity I ∼ | ~E1 + ~E2|
2 = 4I1 cos2(k∆L/2). Also explains Snell’s

law, lenses, thin film interference, diffraction, diffraction gratings, etc. Visible light has

λ ∼ 4 − 7 × 10−7m.

• But it turns out that this, plus concepts from thermodynamics, leads to a paradox.

Also, disagreement with experiments around 1900.

• First let’s recall waves. First in 1d, waves on a string.
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Because this is a linear equation, we can use superposition of solutions. An example of a

solution is a superposition of traveling waves, e.g. ψ(x, t) = f(x−vt)+g(x+vt). Write the

general traveling wave as Fourier integrals, with k = 2π/λ, ω = 2π/T , related by ω = vk,

e.g.

ψ(x, t) =

∫

∞

−∞

dk

2π

(

A(k)ei(kx−ωt) +B(k)ei(kx+ωt)
)

.

These solutions are appropriate for an infinitely long string. In that case, k is arbitrary.

But when the string has finite length L, with ends tied down, we have the boundary

condition ψ(x = 0, t) = ψ(x = L, t) = 0. In that case, k is quantized, k = πn/L, i.e.

λ = 2L/n. Then the above integral is replaced with a sum over the integer n.

• For waves moving in 3d, we have k = |~k|, where ~k points in the direction that the

wave is moving. Replace ∂2/∂x2 → ∇2 in wave equation. Solutions look like e.g.

ψ(~x, t) =

∫

d3k

(2π)3
A(~k)ei(~k·~x−ωt),

with ω = vk.

The intensity of a wave is related to |ψ|2, which is how there can be interference.

Examples from water, sound, light waves.

• Blackbody radiation and the UV catastrophe. Picture each ~k mode as a har-

monic oscillator, one for each polarization. Let N(ω)dω be the number of wave modes

in the frequency range from ω to ω + dω. Consider first waves on a string, ψ(x, t) =

A sin(kx) cos(ωt), k = nπ/L, n = 1, 2 . . .. The number of modes in interval ∆k is L∆k/π,

so N(k)dk = Ldk/2π, where the 2 is because the standing wave is a superposition of 2
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traveling waves, with k and −k. So can replace
∑

∞

n=1 →
∫

∞

−∞
Ldk/2π. For 3d waves,

we replace
∑

nx,ny,nz
→

∫

V d3~k/(2π)3. Write in spherical coordinates, use ω = ck, and

recall there are 2 polarizations, to get N(ω)dω = V ω2dω/π2c3. If we write ω = 2πν and

N(ω)dω = N(ν)dν, this gives N(ν) = 8πV ν2/c3. Note that this density diverges for large

frequencies.

Each ~k mode of light behaves as a harmonic oscillator. A classical harmonic oscillator,

at temperature T , has average energy kBT , independent of the frequency. The energy

density in the range ω to ω+dω would then be ucl(ω, T ) = N(ω)kBTdω/V = kBTω
2/π2c3.

Crazy! For any T 6= 0, would have divergent energy density at large frequencies. UV

catastrophe. A paradox in classical physics.

• Planck’s fix: assume radiation of frequency ν can only be absorbed or emitted in

quantized amounts, given by E = nhν for integer n. In this case, the average energy of a

harmonic oscillator of frequency ω is E(ω, T ) =
∑

∞

n=0 nh̄ωe
−nh̄ω/kBT /

∑

∞

n=0 e
−nh̄ω/kBT =

h̄ω(eh̄ω/kBT −1)−1. This result agrees with the classical answer of kBT for low frequencies,

h̄ω � kBT , but differs for large frequencies.

Leads to u(ν, T ) = 8πhν3c−3(ehν/kBT − 1)−1. Fits beautifully the experimentally

observed data, for h = 6.6261 × 10−34J · s. For low frequencies, this agrees with the

classical result. At high frequencies, it is very different, and avoids the divergent energy

density. Also, emitted power per area per frequency e(ω, T ) = cu(ω, T )/4. Integrating, get

the Stephan-Boltzmann result for the total power per unit area etotal(T ) =
∫

∞

0
e(ν, T )dν =

σT 4, with σ = 2π5k4
B/15c2h3.
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