4/3/07 Lecture 1 outline
e An old question: is light a particle or a wave? In 1800 Young’s double slit experiment
showed interference, suggests light is a wave. Later understood as solution of Maxwell’s
equations. Double slit, intensity I ~ |Ej 4+ E5|? = 41 cos?(kAL/2). Also explains Snell’s
law, lenses, thin film interference, diffraction, diffraction gratings, etc. Visible light has
A~d—T7x107"m.
e But it turns out that this, plus concepts from thermodynamics, leads to a paradox.
Also, disagreement with experiments around 1900.
e First let’s recall waves. First in 1d, waves on a string.
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Because this is a linear equation, we can use superposition of solutions. An example of a
solution is a superposition of traveling waves, e.g. 1(z,t) = f(z—vt)+g(z+vt). Write the
general traveling wave as Fourier integrals, with k = 27 /A, w = 27/T, related by w = vk,
e.g.
(e t) = / T (At ¢ gyt ren)).
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These solutions are appropriate for an infinitely long string. In that case, k is arbitrary.
But when the string has finite length L, with ends tied down, we have the boundary
condition ¢¥(z = 0,t) = ¥(z = L,t) = 0. In that case, k is quantized, k = wn/L, i.e.
A =2L/n. Then the above integral is replaced with a sum over the integer n.
e For waves moving in 3d, we have k = |E|, where k points in the direction that the

wave is moving. Replace 0?/02% — V2 in wave equation. Solutions look like e.g.

— d3k ™ i(k-Z—w
W) = [ AR FE,

with w = vk.

The intensity of a wave is related to [1|?, which is how there can be interference.
Examples from water, sound, light waves.

e Blackbody radiation and the UV catastrophe. Picture each k mode as a har-
monic oscillator, one for each polarization. Let N(w)dw be the number of wave modes
in the frequency range from w to w + dw. Consider first waves on a string, ¥ (z,t) =
Asin(kz) cos(wt), k =nm/L,n=1,2.... The number of modes in interval Ak is LAk/m,
so N(k)dk = Ldk/2m, where the 2 is because the standing wave is a superposition of 2
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traveling waves, with k and —k. So can replace >~ — ffooo Ldk/2w. For 3d waves,

we replace ) — [ Vd3k/(2r)3. Write in spherical coordinates, use w = ck, and
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recall there are 2 ;olarizations, to get N(w)dw = Vw?dw/n%c3. If we write w = 27 and
N(w)dw = N(v)dv, this gives N(v) = 87V 1v?/c?. Note that this density diverges for large
frequencies.

Each k mode of light behaves as a harmonic oscillator. A classical harmonic oscillator,
at temperature T, has average energy kg7, independent of the frequency. The energy
density in the range w to w+dw would then be uq(w,T) = N(w)kgTdw/V = kpTw?/7?c3.
Crazy! For any T # 0, would have divergent energy density at large frequencies. UV
catastrophe. A paradox in classical physics.

e Planck’s fix: assume radiation of frequency v can only be absorbed or emitted in
quantized amounts, given by E = nhv for integer n. In this case, the average energy of a
harmonic oscillator of frequency w is E(w,T) = S_00 nhwe "hw/ksT j 5720 o—nhw/kpT -
hw(e™/kBT _1)=1  This result agrees with the classical answer of kgT for low frequencies,
hw < kT, but differs for large frequencies.

Leads to u(v,T) = 8mhiic=3(e"/k8T — 1)1, Fits beautifully the experimentally
observed data, for h = 6.6261 x 10734J - s. For low frequencies, this agrees with the
classical result. At high frequencies, it is very different, and avoids the divergent energy
density. Also, emitted power per area per frequency e(w,T) = cu(w,T)/4. Integrating, get
the Stephan-Boltzmann result for the total power per unit area e;p1q; (1) = fooo e(v,T)dv =
oT*, with o = 27°k% /15c¢%h3.



