130a Homework 1

- 1. In class, we found $e(\omega, T)d\omega$, the power per unit area emitted in the frequency range $d\omega$. Substitute $\omega = 2\pi c/\lambda$ and define $\tilde{e}(\lambda, T)d\lambda = e(\omega, T)d\omega$. The function $\tilde{e}(\lambda, T)$ has a maximum at wavelength λ_{peak} . Verify that $\lambda_{peak}T = b$ for some constant b, and write the equations that determines b. This yields Wein's law $\lambda_{peak}T \approx 2.898 \times 10^{-3} Km$.
- 2. According to example 1.1 in the text, the sun radiates power $P = 4.5 \times 10^{25} W$. What is the radiated power of a star whose radius is a factor of 2 bigger than that of the sun, and whose peak wavelength is a factor of 3 bigger than the peak wavelength of the sun?
- 3. Consider a spherical cavity of radius 1 meter. How many possible light wave modes are there in the cavity having frequency in the spectrum that's visible to the human eye (wavelengths in the range from $4 \times 10^{-7}m$ and $7 \times 10^{-7}m$)?
- 4. When light of a certain wavelength λ is incident on a certain metal, the stopping potential for the photoelectron current is found to be 6V. When light of wavelength 2λ is incident on the same metal, the stopping potential is 1V. What is the work function of the metal, in units of eV?