
10/25/19 Lecture outline

• Last time: amplitudes in toy model of real mesons φ of mass µ and complex nucleons

of mass m, with Hint = −gφψ̄ψ. Get

ANN→NN = (−ig)2
[

1

(p1 − p′1)
2 − µ2 + iǫ

+
1

(p1 − p′2)
2 − µ2 + iǫ

]
(2π)4δ(4)(p1+p2−p

′
1−p

′
2)+O(g4).

Explicitly, in the CM frame, p1 = (
√
p2 +m2, pê) and p2 = (

√
p2 +m2,−pê), p′1 =

(
√
p2 +m2, pê′), p′2 = (

√
p2 +m2,−pê′), where ê · ê′ = cos θ, and get

A = g2
(

1

2p2(1− cos θ) + µ2
+

1

2p2(1 + cos θ) + µ2

)
.

Scattering by φ exchange leads to an attractive Yukawa potential. This was Yukawa’s

original goal, to explain the attraction between nucleons. Indeed, the t-channel term in

e.g. the above N+N scattering amplitude gives, upon using (p1−p
′
1)

2−µ2 = −(|~p1−~p
′
1|

2+

µ2), and the Born approximation1 in NRQM, ANR =
∫
d3~re−i(~p′−~p)·~rV (~r), the attractive

Yukawa potential

V (r) =

∫
d3q

(2π)3
−(g/2m)2ei~q·~r

|~q|2 + µ2
= −

(g/2m)2

4πr
e−µr.

(The 1/(2m)2 is because we normalized the relativistic states with the extra factor of

2E ≈ 2m as compared with standard nonrelativistic normalization2. This gives Yukawa’s

explanation of the attraction between nucleons, from meson exchange. The u-channel term

is an exchange potential interaction, which exchanges the positions of the two identical

particles in addition to giving a potential. For angular momentum ℓ in a partial-wave

expansion, the exchange term differs from the direct one by a factor of (−1)ℓ.

• More examples:

(1) N(p1) + N̄(p2) → N(p′1) + N̄(p′2) has

iA = (−ig)2
(

i

(p1 − p′1)− µ2
+

i

(p1 + p2)− µ2

)
.

1 Max Born, in QM, or Lord Rayleigh classically: dσ

dΩ
∼ |U(~q)|2. S − 1 ≈ V so 〈~p′,−~p′|S −

1|~p,−~p〉 ≈ 〈~p′,−~p′|V |~p,−~p〉
2 This is clear on dimensional grounds, since [g] ∼ m. Write 〈f |U |i〉/

√
〈f |f〉〈|i|i〉 for the prop-

erly normalized amplitude. More generally, write a(p) =
√
2Eâ(p) andA =

∏
i

√
2Ei

∏
f

√
2Ef Â.
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(2) N(p1) + N̄(p2) → φ(p′1)φ(p
′
2) has

iA = (−ig)2
(

i

(p1 − p′1)−m2
+

i

(p1 − p′2)−m2

)
.

(3) N(p1) + φ(p2) → N(p′1) + φ(p′2) has

iA = (−ig)2
(

i

(p1 − p′2)−m2
+

i

(p1 + p2)−m2

)
.

Note: the 1/2! from expanding e−i
∫

d4xHI(x) is cancelled by a factor of 2 from ex-

changing the two vertices.

• Crossing symmetry, CPT. Write 1 + 2 → 3̄ + 4̄. Take all momenta incoming,

A(p1, p2, p3, p4), with p1 + p2 + p3 + p4 = 0 and use s = (p1 + p2)
2, t = (p1 + p3)

2 and

u = (p1 + p4)
2. Note s + t + u =

∑4
n=1m

2
n. The process 1 + 2 → 3̄ + 4̄ is kinematically

allowed for s > 4m2, t < 0, u < 0. If instead u > 4m2, it’s the process 1 + 3 → 2̄ + 4̄.

• We saw above that the t channel term above is associated with the Yukawa potential.

The u channel term is similar. Now consider the s channel, in e.g. the N + N̄ scattering

amplitude. Using the CM relations ~p1 = −~p2 ≡ ~p and E1 = E2 =
√
p2 +m2 gives

A ∼
1

4m2 + 4p2 − µ2 + iǫ
,

so for µ < 2m the denominator is always positive, and the amplitude decreases with

increasing p2. For µ > 2m there is a pole at (p1 + p2)
2 = µ2, where the intermediate

meson goes on shell. This leads to a peak (not a pole, of course; because the intermediate

particle is unstable anyway, the denominator gets an imaginary contribution from higher

order contributions), a resonance, in the cross section. E.g. Z0 pole in e+e− → µ+µ−, but

not in e+e− → γγ.

• Solve L = 1
2∂φ

2 − 1
2m

2φ2 − J(x)φ. Using Dyson + Wick’s theorem, U(∞,−∞) =:

eO1+
1
2
O2 :, where O1 = −i

∫
d4xJ(x)φ(x) andO2 = (−i)2

∫
d4x1d

4x2DF (x1−x2)J(x1)J(x2).

So O2 = α + iβ is a number, whereas O1 is an operator. Will lead to probability Pn for

creating out of the vacuum a state with n mesons given by Pn = e−|α||α|n/n!, the Poisson

distribution. You’ll work out the details in the HW assignment.

• Compute probabilities by squaring the S-maxtrix amplitudes, but have to be careful

with the delta functions, since squaring the delta functions would give nonsense.

Warmup: consider quantum mechanics, with U(t) = Te−i
∫

t

H(t)dt,

〈f |U(t)|i〉 ≈ −i〈f |Hint|i〉

∫ t

0

dteiωt,
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where ω = Ef − Ei. If we take t → ∞ first, we get δ(ω) and squaring would give

nonsense. That’s because we’re asking the wrong question if we ask about probability for

a transition over all time – instead, we should ask about the rate. So keep t finite for now.

Squaring gives P (t) = 2|〈f |Hint|i〉|
2(1 − cosωt)/ω2. For t → ∞, multiply by dEfρ(Ef)

and replace (1−cosωt)/ω2 = 4 sin2( 1
2
ωt)/ω2 → πtδ(ω) (using

∫∞

−∞
dxx−2 sin2 x = π (hint:

sin2 x/x2 = (2− ei2x − e−i2x)/4x2 and close the contour in the correct directions)) to get

Ṗi→f = 2π|〈f |Hint|i〉|
2ρ(E).

This is “Fermi’s Golden Rule” – it was actually derived by Dirac, but Fermi used it a lot and

called it the golden rule. Another aside: Fermi and Dirac independently discovered that

spin 1/2 objects must anticommute, and Dirac generously named such objects “Fermions”.

Naively taking t→ ∞ initially would have given amplitude ∼ δ(ω), and squaring that

would give δ(ω)2, which needs to be replaced with δ(ω)2πT , and then divide by T to get

the rate. Similarly in field theory, δ(p)2 should be replaced with probability ∼ δ(p) times

phase space volume factors.
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