10/23/19 Lecture outline

e Last time: amplitudes in toy model of real mesons ¢ of mass p and complex nu-
cleons of mass m, with Hj,; = —gdp. Aside, quantize the nucleons as usual gives
[V(Z,t), ¢T(g, t)] = i63(Z — ¥). Consider N + N — N + N, to O(g?). The initial and final
states are

[i) = 0T ()b (p2)10),  (f] = (0[b(p})D(P5)-
The term that contributes to scattering at O(g?) is (don’t forget the time ordering!)
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The term that contributes to S — 1 thus involves
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The amplitude involves this times Dp(x; — x2) (from the contraction), with the prefactor

and integrals as above. The final result is

1 1
— + :
(pr —p))? —p? +ie  (p1—ph)? — p? +ie

ivmﬁ[ ]@ﬂwwm+m—m—m»

Explicitly, in the CM frame, p1 = (1/p? + m?,pe) and ps = (\/p? + m?, —pe), pj =

(V/p? + m?2,pe), py = (\/p?> + m?,—pe’), where € - € = cosf, and get

A=g? . + !
—9 2p2(1 — cos0) + u2  2p2(1+cos) +pu? )"

According to the above, [A(2 — 2)] = 0 and the above is consistent with that. Good.

Note also that the amplitude is symmetric if we exchange p4 <> ph and likewise for
the outgoing states. This fits with the fact that the N states are identical bosons, which
follows from the fact that [¢(t, %), ¥ (t,y)] = 0. As we’ll discuss later, identical fermions
instead have {¢(t,Z),¥(t,9)} = 0.

e Mandelstam variables for p; +ps — p) +p) scattering: s = (p1+p2)?, t = (p1—p})?,
u= (p1—ph)?, with s+t+u=m?+m3+m? +m3,. In CM, s = 4E? t = —2p*(1 —cos ),
and u = —2p*(1 + cos 0).



e Recall how we got the above answer. We expand exp(—ig [ d*zH) and compute
the time ordered expectation values using Wick’s theorems, with the contractions giving
factors of Dp(z1 — z2). Doing this, we get a [ d*x for each factor of —ig and a d*k for
each internal contraction. Draw a picture in position space. Let E be the number of
external lines, i.e. the number of incoming + outgoing particles. (We saw last time that
[A] =4 — E.) It is easier to think about everything in momentum space. Then the [ d*z
for each vertex gives a (27r)454(ptoml7 in)-

e Feynman rules! Each vertex gets (—ig)(27)%6*(piotar in), each internal line gets
S (3354 Dr(k?), where D is the propagator, e.g. Dp(k?) = Result is (f|(S —
1)]i), so divide by (27)%6*(pr — p1) to get iAy;.

If the diagram has no loops, the momentum conserving delta functions fix all internal
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momenta in terms of the external ones. When the diagram has L # 0 loops, the procedure
above yields integrals over the internal momenta of the loops. (Note that if a diagram has
I internal lines and V vertices, then there are I momentum integrals, and V' momentum
conserving delta functions; one of these becomes overall momentum conservation, so there
are L = I — (V — 1) momentum integrals left to do, and L is the number of loops in the
diagram.) Any loop momentum integrals require renormalization, which we’ll discuss later
(next quarter), so for now we’ll just consider “tree-level” contributions, associated with
diagrams without loops, L = 0.

e Scattering by ¢ exchange leads to an attractive Yukawa potential. This was Yukawa’s
original goal, to explain the attraction between nucleons. Indeed, the t-channel term in e.g.
the above N + N scattering amplitude gives, upon using (p1 — p})? — u? = —(|p1 — p1|*> +
1#?), and the Born approximation' in NRQM, Ayp = [ d*7e 7 ~P) 7V () the attractive

Yukawa potential
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(The 1/(2m)? is because we normalized the relativistic states with the extra factor of
2F = 2m as compared with standard nonrelativistic normalization?. This gives Yukawa’s
explanation of the attraction between nucleons, from meson exchange. The u-channel term
is an exchange potential interaction, which exchanges the positions of the two identical
particles in addition to giving a potential. For angular momentum ¢ in a partial-wave

expansion, the exchange term differs from the direct one by a factor of (—1)¢.

1 Max Born, in QM, or Lord Rayleigh classically: do ~ U9
2 This is clear on dimensional grounds, since [g] ~ m. More generally, write a(p) = vV2Ea(p)

and A =[], vV2E[]; \/2E; A



