
10/21/19 Lecture outline

• Last time: interaction picture. Write H = H0 + Hint. We use H0 to time evolve

the operators, and Hint to time evolve the states:

i
d

dt
OI(t) = [OI , H0], i

d

dt
|ψ(t)〉I = Hint|ψ(t)〉I .

|ψ(t)〉I = eiH0(qS ,pS)t|ψ(t)〉S, OI = eiH0tOSe
−iH0t

For example, we’ll take H0 to be the free Hamilton of KG fields, with only the mass terms

included in the potential. Again, this is free because the EOM are linear, and we can solve

for φ(x) by superposition. HI(t) is built from these free fields

φ(~x, t) = eiH0tφS(~x)e
−iH0t.

As before, upon quantization, the fields become superpositions of creation and annihilation

operators. The states are all the various multiparticle states, coming from acting with the

creation operators on the vacuum. Time evolution is via the interaction picture operator

that satisfies

i
d

dt
UI(t, t

′) = HI(t)UI(t, t
′).

Compute probabilities from squaring amplitudes, and amplitudes from 〈f(t = +∞)|i(t =

−∞)〉 = 〈f |S|i〉 = 〈f |U(∞,−∞)|i〉. Naively, U(tf , ti) = exp(− i
h̄

∫ tf

ti
Hint(t)dt), but have

to be careful about Hint not commuting at different times. Get time ordering.

Dirac’s / Dyson’s formula:

UI(t, t
′) = Te

−i
∫

t

t′
dt′′HI (t

′′)
.

Argue for it by iterating time intervals. To compute scattering S-matrices, a way to think

about it (to be improved shortly) is to consider asymptotic in and out states, with the

interaction turned off. Time evolve, with the interaction smoothly turned on and off in

the middle (see Coleman notes for more details).

|ψ(t)〉 = Te−i
∫

d4xHI |i〉.

Derive it by solving i d
dt
|ψ(t)〉 = HI(t)|ψ(t)〉 iteratively:

|ψ(t)〉 = |i〉+ (−i)

∫ t

−∞

dt1HI(t1)|ψ(t1)〉
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|ψ(t1)〉 = |i〉+ (−i)

∫ t1

−∞

dt2HI(t2)|ψ(t2)〉

etc where t1 > t2, and then symmetrize in t1 and t2 etc., which is what the T time ordering

does. Illustrate it for 2nd term (−i)2/2!
∫ t

t′
dt1

∫ t

t′
dt2T (HI(t1)HI(t2), get twice the integral

over the t1 > t2 region instead of the integral over the square.

• Now use Wick’s theorem to get rid of the time ordered products. Thereby compute

probability amplitude for a given process

〈f |(S − 1)|i〉 = 〈f |Te−i
∫

d4x:HI(x):|i〉 ≡ iAfi(2π)
4δ(4)(pf − pi).

The initial states have momenta p1 . . . pn and the final states have momenta q1 . . . qm.

Need to strip off the momentum conserving delta function to get the amplitude. Note the

normal ordering in : HI : (x): we want the full Hamiltonian to be normal ordered so e.g.

|0〉 has zero energy. This avoids some issues with quantum loops. As you will later see,

this normal ordering is accomplished via counterterms.

Dimensional analysis: [Afi] = 4− ni − nf .

• Look at some examples, and connect with Feynman diagrams. As a first, simple

example consider the toy model for mesons and (bosonic) baryon, withHint =
∫

d3xgφψ†ψ.

Note that there is a ψ → eiαψ global symmetry, so there is a corresponding conserved

current and charge, which we’ll call “nucleon number”. We choose to assign ψ nucleon

number charge −1 and ψ† nucleon number +1.

The gφψψ̄ interaction is also a toy model for the Higgs’ coupling to fermions, where

the scalar φ’s “Yukawa” coupling mediates a force. The strong, weak, and electromag-

netic forces are communicated by spin 1 gauge fields. Gravity is mediated by the spin

2 graviton (and the difference between spin 1 vs spin 2 is part of why quantum gravity

is conceptually and technically challenging). Spin 0 scalars can also mediate forces, as

in this example. We’ll see that their force is always attractive (even spins always lead

to attractive forces). Fifth force experimental bounds constrain the existence, mass, and

couplings of fundamental scalars. In our toy model, where ψ and ψ̄ are scalars, the theory

has a vacuum instability, since a cubic potential isn’t bounded below. This shows up only

indirectly in perturbation theory, and is more of a non-perturbative issue. For the actual

Yukawa couplings, ψ is instead a Fermion.

φ(x) =

∫

d3p

(2π)32E

(

a(p)e−ipx + a†(p)eipx
)

, ψ(x) =

∫

d3p

(2π)32E

(

b(p)e−ipx + c†(p)eipx
)

,
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We’ll say that a annihilate a meson φ, b annihilates a nucleon N and c† creates an anti-

nucleon N̄ . The conserved charge is Q = Nb −Nc.

Examples of states:

|φ(p)〉 = a†(p)|0〉, |N(p)〉 = b†(p)|0〉, |N̄(p)〉 = c†(p)|0〉.

Note then e.g.

〈0|φ(x)|φ(p)〉 = e−ip·x, 〈0|ψ(x)|N(p)〉 = e−ip·x, 〈0|ψ†(x)|N(p)〉 = 0.

Example: meson decay. |i〉 = a†(p)|0〉, |f〉 = b†(q1)c
†(q2)|0〉. Compute 〈f |S|i〉 =

−ig(2π)4δ4(p− q1 − q2) to O(g), i.e. A = −g. Probability ∼ g2.

Comment: draw pictures to illustrate a ∼ g3 correction, with 1 loop. In general,

amplitudes scale like (g2/16π2)L where L is the number of loops. We’ll see that loops

lead to divergent momenta integrals, eg.
∫ Λ

d4k/(k2 − m2) ∼ Λ2. This is handled via

renormalization (more next quarter).

• Now consider N +N → N +N , to O(g2). The initial and final states are

|i〉 = b†(p1)b
†(p2)|0〉, 〈f | = 〈0|b(p′1)b(p

′
2).

The term that contributes to scattering at O(g2) is (don’t forget the time ordering!)

T
(−ig)2

2!

∫

d4x1d
4x2φ(x1)ψ

†(x1)ψ(x1)φ(x2)ψ
†(x2)ψ(x2).

The term that contributes to S − 1 thus involves

〈p′1p
′
2| : ψ

†(x1)ψ(x1)ψ
†(x2)ψ(x2) : |p1p2〉 = 〈p′1p

′
2| : ψ

†(x1)ψ
†(x2)|0〉〈0|ψ(x1)ψ(x2)|p1, p2〉.

=
(

ei(p
′

1
x1+p′

2
x2) + ei(p

′

1
x2+p′

2
x1)

)(

e−i(p1x1+p2x2) + e−i(p1x2+p2x1)
)

.

The amplitude involves this times DF (x1 − x2) (from the contraction), with the prefactor

and integrals as above. The final result is

i(−ig)2
[

1

(p1 − p′1)
2 − µ2 + iǫ

+
1

(p1 − p′2)
2 − µ2 + iǫ

]

(2π)4δ(4)(p1 + p2 − p′1 − p′2).
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