
10/2/19 Lecture outline

⋆ Reading: Coleman lectures 2-4. Tong chapters 1-2.

• Continue from last time. Consider classical, relativistically invariant field theory.

The field could e.g. be spin 0, 12 , or 1 (higher spin is also fine classically, e.g. the metric has

spin 2, but the quantum theories have issues and we won’t discuss it here). We will start

with spin 0 fields, i.e. scalars φa(t, ~x), with S =
∫
d4xL(φa, ∂µφa). Then Πµ

a = ∂L/∂(∂µφa),

and E.L. eqns ∂L/∂φa = ∂µΠ
µ
a . Define Πa ≡ Π0

a. H =
∫
d3x(Πφ̇a − L) =

∫
d3xH.

Everything is relativistically invariant if L is Lorentz invariant.

Example: L = 1
2(∂µφ∂

µφ − m2φ2), gives Π = φ̇ and Π̇ = ∇2φ − m2φ, the Klein-

Gordon equation: (∂2+m2)φ = 0. Can’t interpret φ as a probability wavefunction because

of solutions E = ±
√
~p2 +m2. But we’ll see that the KG equation is fine as a field theory.

The field has both creation and annihilation operators, corresponding to the E =

±
√
~k2 +m2 solutions. Write general classical solution

φcl(x) =

∫
d3k

(2π)3(2ω(k))
[acl(k)e

−ikx + a∗cl(k)e
ikx],

where acl(k) are classical constants of integration, determined by the initial conditions.

We’ll quantize soon. Another example: L = i
2 (ψ

∗ψ̇ − ψ̇∗ψ) − ∇ψ∗ · ∇ψ − mψ∗ψ. Get

EOM: i∂tψ = −∇2φ + mψ. Looks like S.E., but again don’t want to interpret ψ as a

probability amplitude – here it’s a field, that we can consider quantizing. This example

won’t work for ψ a scalar field, but we’ll later consider an analogous theory where ψ is a

fermion field, and the equation is the Dirac equation.

• The normalization of the momentum space integral is chosen to be relativistically

nice: it’s Lorentz invariant: d3k/ω = d3k′/ω′. Here’s why: d4kδ(k2 −m2)θ(k0) →
d3k

2ω(k)

upon doing the k0 integral. So normalize 〈k′|k〉 = (2π)32ω(k)δ3(~k − ~k′), with |k〉 ≡√
(2π)32ωk|~k〉.

• In field theory, as in particle mechanics, continuous symmetries lead to conservation

laws, via Noether’s theorem. If a variation δφa changes δL = ∂µF
µ, then it’s a symmetry

of the action and there is a conserved current: jµ = ∂L
∂(∂µφa)

δφa − Fµ.

Example: xµ → xµ + ǫµ, δφa = ǫν∂νφa, δL = ǫν∂νL (assuming no explicit x de-

pendence). Get Tµν = ∂L
∂∂µφa

∂νφa − gµνL. Stress energy tensor. Conserved charge is

Pµ =
∫
d3~xTµ0.

Another example: Λµ
ν = δµν+ω

µ
ν , leads to conservedMµρσ = xµTρσ−xσTρµ. Conserved

charge is Mρσ =
∫
d3xM0ρσ. Conserved angular momentum.
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• Canonical quantization: generalize QM by replacing qa(t) → φa(t, ~x). QM is like

QFT in zero spatial dimensions, with the field playing role of position before:

[φa(~x, t),Πb(~y, t)] = iδabδ
3(~x− ~y) (Equal time commutators).

• Consider the KG equation in 0 + 1 dimensions, i.e. the SHO: L = 1
2 φ̇

2 − 1
2ω

2x2,

p = ∂L/∂φ̇ = φ̇. Classical EOM solved by xcl = ae−iωt+a∗eiωt. Now quantize: [x, p] = ih̄,

[a, a†] = 1, H = ω(a†a + 1
2 ). In the Heisenberg picture, x̂ =

√
1
2ω (ae

−iωt + a†eiωt);

p = ẋ = i
√

ω
2 (ae

iωt − a†e−iωt).

• Now quantize the KG field theory in 3 + 1 dimensions. Write

φ(x) =

∫
d3k

(2π)3(2ω(k))
[a(k)e−ikx + a†(k)eikx].

Then canonical quantization implies that

[a(~k), a†(~k′)] = (2π)3(2ω)δ3(~k − ~k′),

i.e. they are creation and annihilation operators (with our relativistic measure). The

Hamiltonian is then

H = 1
2

∫
d3k

(2π)2(2ω)
ω(a(~k)a†(~k) + a†(~k)a(~k)).

Need to normal order the first term. Define : AB : for operators A and B to mean that

the terms are arranged so that the annihilation operators are on the right, so annihilates

the vacuum.

• The vacuum |0〉 is annihilated by all a(k). Create states with momenta pµ1 , . . ., p
µ
n

via a†(p1) . . . a
†(pn)|0〉. Note that these behave as identical bosons: the state is symmetric

under exchanging any pair of momenta, because [a†(p), a†(p′)] = 0.
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