10/2/19 Lecture outline
* Reading: Coleman lectures 2-4. Tong chapters 1-2.

e Continue from last time. Consider classical, relativistically invariant field theory.
The field could e.g. be spin O,%, or 1 (higher spin is also fine classically, e.g. the metric has

spin 2, but the quantum theories have issues and we won’t discuss it here). We will start
with spin 0 fields, i.e. scalars ¢, (t, Z), with S = [ d*xL(pa, u¢a). Then II¥ = OL/0(0,ba ),
and E.L. equns 0L/d¢, = 9,11#. Define I, = 11%. H = [d®z(Ilp, — L) = [d>zH.
Everything is relativistically invariant if £ is Lorentz invariant.

Example: £ = 1(8,¢00"¢ — m?¢?), gives Il = ¢ and Il = V24 — m2¢, the Klein-
Gordon equation: (92+m?)¢ = 0. Can’t interpret ¢ as a probability wavefunction because
of solutions E = ++/p2 + m?2. But we'll see that the KG equation is fine as a field theory.

The field has both creation and annihilation operators, corresponding to the £ =
+v/k2 + m2 solutions. Write general classical solution

3
() = [ Gy eerte ™ +atk)e™),
where a.;(k) are classical constants of integration, determined by the initial conditions.
We’ll quantize soon. Another example: £ = %(@D*@D —p*p) — Vp* - Vip — map*ep. Get
EOM: i0;¢0 = —V2¢ + ma). Looks like S.E., but again don’t want to interpret v as a
probability amplitude — here it’s a field, that we can consider quantizing. This example
won’t work for v a scalar field, but we’ll later consider an analogous theory where v is a
fermion field, and the equation is the Dirac equation.

e The normalization of the momentum space integral is chosen to be relativistically

nice: it’s Lorentz invariant: d®k/w = d®k’/w’. Here’s why: d*ké(k? — m?)0(ko) — 2‘5)3(’]2)

upon doing the ko integral. So normalize (k'|k) = (27)32w(k)83(k — k'), with |k) =

/(2732w | k).

e In field theory, as in particle mechanics, continuous symmetries lead to conservation

laws, via Noether’s theorem. If a variation d¢, changes 6L = 0, F*, then it’s a symmetry
of the action and there is a conserved current: j# = %&ba — F*.

Example: zt — 2zt 4+ €, 0¢, = €0,¢q, 0L = €0, L (assuming no explicit x de-
pendence). Get T, = 888“—%%8“1)@ — guwL. Stress energy tensor. Conserved charge is
P, = [d3TT,.

Another example: AY = §2+w!, leads to conserved M,,,» = ,T)s—x5T),,. Conserved

charge is M,; = f d3xM0p(,. Conserved angular momentum.

1



e Canonical quantization: generalize QM by replacing q,(t) — ¢4 (t, ). QM is like

QFT in zero spatial dimensions, with the field playing role of position before:
(o (Z, 1), (7, 1)] = i0,00°(Z — )  (Equal time commutators).

e Consider the KG equation in 0 4+ 1 dimensions, i.e. the SHO: L = %¢2 — %waQ,
p=0L/d¢p = $. Classical EOM solved by o = ae ™! +a*e™t. Now quantize: [z, p] = ih,
[a,a’] = 1, H = w(a'a + 1). In the Heisenberg picture, T = /5 (ae~ ! + ale™?);
p =& =1iy/%(ae™t —ale "),

e Now quantize the KG field theory in 3 + 1 dimensions. Write

_ dgk —tkx T ikx
0@) = [ Gyl + (et
Then canonical quantization implies that
[a(k), a’(K)] = (2m)* (2w)8* (k — '),

i.e. they are creation and annihilation operators (with our relativistic measure). The
Hamiltonian is then
H=1 / ﬂw(a(%)cﬂ(lg) + at(B)a(k)).
2 ) (2m)2(2w)

Need to normal order the first term. Define : AB : for operators A and B to mean that
the terms are arranged so that the annihilation operators are on the right, so annihilates
the vacuum.

e The vacuum |0) is annihilated by all a(k). Create states with momenta pf{, ..., pt
via af(p1)...af(p,)|0). Note that these behave as identical bosons: the state is symmetric

under exchanging any pair of momenta, because [af(p), a'(p’)] = 0.



