
12/5/19 Lecture outline

• Last time: made the U(1) global symmetry of the Dirac equation into a local

symmetry by replacing ∂µ → Dµ ≡ ∂µ + iqAµ, where q is the charge of the field ψ:

L ⊃ ψ̄(i /D − m)ψ with local gauge “symmetry” (really redundancy) ψ → e−iqf(x)ψ and

Aµ → Aµ + ∂µf , since Dµψ → e−iqfDµψ transforms covariantly.

Noted that L ⊃ −Aµj
µ and this is gauge invariant as long as jµ is conserved.

We then wrote down kinetic terms for a massive spin 1 field Aµ and noted that they

decompose into separate longitudinal and transverse terms, with different masses, and we

can arrange to decouple the longitudinal term.

• Continue from there and, to streamline the discussion, consider several cases in

parallel:

(0) L ⊃ −1
2(∂µA

ν∂µA
ν + a∂µA

µ∂νA
ν + bAµA

µ).

(i) L ⊃ 1
2
(−∂µA

ν∂µAν + ∂µA
µ∂νA

ν +m2
AAνA

ν) = −
1

4
FµνF

µν + 1
2
m2

AAµA
µ.

(ii) L ⊃ −
1

4
FµνF

µν , Aµ ∼ Aµ + ∂µf

(iii) L ⊃ −
1

4
FµνF

µν −
1

2ξ
(∂ ·A)2 (Aµ ∼ Aµ + ∂µf)

Case (0) was discussed last time. The longitudinal part corresponds to Aµ ∼ ∂µφ

and doesn’t add anything beyond essentially just including a scalar field φ – so we won’t

discuss it further.

Case (i) decouples the longitudinal mode by making its mass infinite, and is the

Lagrangian for a massive vector field. We do not identify under gauge equivalence, and

indeed the mass term is not gauge invariant. We will see that it has 3 physical, propagating

degrees of freedom.

Simply taking the mass mA → 0 in case (i) gives a sick theory. If we want mA → 0,

we must impose gauge equivalence as in case (ii) – which is what we wanted to consider

anyway for gauge symmetry. This theory has two physical propagating degrees of freedom,

as in the two polarizations of light.
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Case (iii) includes what is called a gauge fixing term, with gauge parameter ξ. It is

essentially case (0) with b→ 0. Before imposing gauge equivalence (which is in parentheses

because it is only imposed at the end) the theory has 4 polarizations and is a sick: some

of the polarizations have the wrong sign kinetic term. Nevertheless, it is sometimes a use-

ful way to treat case (ii), by temporarily keeping the unwanted d.o.f. and then verifying

that they decouple and throwing them away at the end of the calculation. The decou-

pling amounts to verifying that physical quantities – sums of Feynman diagrams but not

necessarily individual diagrams – are independent of ξ.

• Let’s start with case (i). As in E and M we can write it in terms of F i0 = Ei with

~E = −∇A0 − ~̇A and F ij = ǫijkBk with ~B = ∇ × ~A as L ⊃ 1
2(
~E2 − ~B2) + 1

2m
2
A(A

2
0 −

~A2). Note that A0 is non-dynamical, and its equation of motion is Gauss’ law. The

conjugate momenta to Aµ are π0 = ∂L/∂Ȧ0 = 0, and πi = ∂L/∂Ȧi = −F 0i = Ei.

Then H = −1
2(F0iF

0i − 1
2FijF

ij + µ2AiA
i − 1

2m
2
AA0A

0). The plane wave solutions are

Aµ ∼ ǫµe−ikx + h.c.. In the frame where kµ = (k0,~0), we can choose ǫ(±) = 1√
2
(0, 1,∓i, 0)

and ǫ(0) = (0, 0, 0, 1), where the label is the value of Jz of the spin 1 vector. Normalize by

ǫ(r)∗ · ǫ(s) = −δrs and
∑

r ǫ
(r)∗
µ ǫ

(r)
ν = −gµν +

kµkν

m2

A

.

• Quantize the massive vector:

[Ai(t, ~x), F
j0(t, ~y)] = iδji δ

(3)(~x− ~y).

Note that we only quantize the space components; we do not directly quantize the non-

dynamical A0(t, ~x). Instead, we solve for A0 by the EOM, which here gives ∇ · (−∇A0 −

~̇A) = m2
AA0, and hence A0(t, ~x) =

∫

d3~x′e−mA|~x−~x′| ∇· ~̇A(t,~x)
4π|~x−~x′| . So A0 is a complicated,

composite operator, with some commutation relation determined by that of Ai; we will not

bother to write it down. (In the massless case, we can choose a gauge where A0 = ∇· ~A = 0

and the physics is gauge invariant.) In terms of the plane wave solutions,

Aµ(x) =
3

∑

r=1

∫

d3k

(2π)3(2ωk)

[

arkǫ
r
µe

−ikx + a†rk ǫ
∗r
µ e

ikx
]

,

(as usual, there is a choice of convention in the normalization of the creation and annihi-

lation operators), and with this normalization the quantization condition implies that

[ark, a
†s
k′ ] = δrs(2π)3(2ωk)δ

3(~k − ~k′).
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and

: H :=
∑

r

∫

d3k

(2π)3(2ωk)
ωka

†r
k a

r
k.

• The propagator, the contraction of Aµ(x) and Aν(y), is

〈TAµ(x)Aν(y)〉 =

∫

d4k

(2π)4
e−ik(x−y)

[

−i(gµν − kµkν/m
2
A)

k2 −m2
A + iǫ

]

.

This is obtained from the above expansion of Aµ and the commutation relations for the

creation and annihilation operators.

In the path integral description, we obtain the propagator from the generating func-

tional with sources sµ(x) for Aµ, so we get correlation functions for Aµ via acting with

Aµ ↔ −i δ
δsµ

on

Z[sµ] =

∫

[dAµ] exp(i

∫

d4x

(

−
1

4
FµνF

µν + 1
2m

2
AAµA

ν − sµA
µ

)

.

Note that sµ couples like a conserved current Jµ. Note also that we can integrate by parts

to write −1
4
FµνF

µν + 1
2
m2

AAµA
µ = 1

2
Aµ(∂µ∂ν − gµν(∂

2 + m2
A))A

ν and we can do the

quadratic functional integral over Aµ by completing the square, as usual, to get

Z[sµ] = exp(−1
2

∫

d4x

∫

d4ysµ(x)D
µν(x− y)sν(y)),

where (∂µ∂ν −gµν(∂
2+m2

A))D
µκ = iδκµδ

4(x−y) is the Green’s function for the differential

operator in the original integral, and Dµν(x− y) is equal to 〈TAµ(x)Aν(y)〉.

So the Feynman rule is that massive vectors have the momentum space propagator

[

−i(gµν − kµkν/m
2
A)

k2 −m2
A + iǫ

]

.

And 〈0|Aµ(x)|V (k, r)〉 = ǫµ(k)
re−ikx, so incoming vector mesons have ǫrµ(k) and outgoing

have ǫ∗r(k).

We can couple the massive vector to other fields, e.g. to a fermion via Lint = −gψ̄ /AΓψ,

with Γ = 1 (vector) or Γ = γ5 (axial vector). Gives Feynman rule that a vertex has a

factor of −igγµΓ.

• Now consider the massless theory, mA → 0. If we add L ⊃ −Aµj
µ to the massive

theory, get ∂µA
µ = m−2

A ∂µj
µ, so there is only a sensible limit if ∂µj

µ = 0, must couple to
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a conserved current. The only way to have a sensible mA → 0 limit is if Aµ is a gauge

field, associated with a local gauge symmetry. Indeed, the operator in brackets in

[ηµν(∂
ρ∂ρ)− ∂µ∂ν ]A

ν = 0

is not invertable: it annihilates any function of form ∂µλ. Solution: require that Aµ ∼

Aµ + ∂µλ, i.e. gauge invariance. The space of gauge fields has equivalent gauge orbits.

Minimal coupling examples:

L = ψ̄(i /D −m)ψ = ψ̄(i/∂ − q /A−m)ψ.

L = Dµφ
∗Dµφ−m2|φ|2.

The first gives a ψ̄Aµψ Feynman vertex weighted by −iqγµ, and the second gives a

φ∗(p′)Aµφ(p) vertex weighted by ieq(p+p′)µ, along with a AµAνφ
∗φ seagull graph weighted

by 2iq2gµν (factor of 2 because of the two identical Aµ fields).

As in the massive vector case, A0 has no kinetic term, can solve its EOM (∇ · ~E =

0 → ∇2A0 + ∇ · ~̇A = 0):

A0(~x) =

∫

d3~x′
∇ · ~̇A(~x′)

4π|~x− ~x′|
.

Gauge fixing: can always choose e.g. ∂µA
µ = 0. Doesn’t entirely fix the gauge. Can still

pick ∇ · ~A = 0 – Coulomb gauge – then A0 = 0. See two polarizations. So take ~ǫr with

~ǫr · ~p = 0, orthonormal. The completeness relation is similar to that above, except that we

replace µ2 → |~p|2. The propagator is then

〈TAi(x)Aj(y)〉 =

∫

d4k

(2π)4
e−ik(x−y)

[

i(δij − kikj/|~k|
2)

k2 + iǫ

]

.

This gauge can be a pain in the interacting theory (need to write instantaneous δ(x0 −

y0)/|~x − ~y| Coulomb interaction). It’s nicer to write something more manifestly Lorentz

invariant.

In the massive vector case, we had the propagator −i(gµν−kµkν/m
2
A)/(k

2−m2
A+ iǫ).

In the mA → 0 massless gauge theory, gauge invariance ensures that the kµkν term has no

effect in physical, on-shell amplitudes.

• Gauge fixing. Try to preserve Lorentz invariance by imposing ∂µA
µ = 0, and not

A0 = 0. Can modify L to get Lorentz gauge EOM. More generally, can consider

L = −
1

4
FµνF

µν −
1

2ξ
(∂ ·A)2,
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and quantize for any parameter ξ. Popular choices are ξ = 1 (Feynman) and ξ = 0 (Lan-

dau). Now get π0 = ∂L/∂(Ȧ0) = −∂µA
µ/ξ. Do canonical quantization for all components,

[Aµ(~x), πν(~y)] = iηµνδ(~x−~y). Write plane wave expansion with 4 polarizations, normalized

to ǫλ · ǫλ
′

= ηλλ
′

. Get that timelike polarizations create negative norm states. Can fix this

by imposing ∂µA+
µ |Ψ〉 = 0 on the physical states, along with gauge invariance relation, to

get a physical Hilbert space with positive norms.

Propagator for gauge field is

〈TAµ(x)Aν(y)〉 =

∫

d4k

(2π)4
e−ik(x−y)

[

−i(gµν + (ξ − 1)kµkν/k
2)

k2 + iǫ

]

.

Again, the kµkν piece will drop out in the end in physical amplitudes. Just need to make

a choice and stick with it consistently. Or keep ξ as a parameter, and then it’s a good

check on the calculation that the ξ indeed drops out in the end.

• QED, and examples. Recall the Feynman rules: incoming electrons get a ur(p),

outgoing electrons get a ūr(p), incoming positrons get a v̄r(p), outgoing positrons get a

vr(p). Incoming photons get an ǫµ(p), and outgoing photons get a ǫ∗µ(p). The electron

propagator is i/(/p−m+iǫ), and the photon propagator is −i(gµν+(ξ−1)(kµkν/k
2))/(k2+

iǫ). The interaction vertex is −ieγµ.

Consider for example Compton scattering, e−(p)γ(k) → e−(p′)γ(k′) (related to

e+e− → γγ by crossing symmetry):

iA = −ie2ǫ∗µ(k
′)ǫν(k)ū

r′(p′)

[

γµ(/p+ /k +m)γν

(p+ k)2 −m2
+ (k → −k′).

]

ur(p)

= −iǫ∗µ(k
′)ǫν(k)ū

r′(p′)

[

γµ/kγν + 2γµpν

2p · k
+ (k → −k′)

]

ur(p).

Writing iA = Mµνǫν(k)ǫ
∗
µ(k

′), you can verify that kµM
µν = 0. The amplitude must

always vanish if ǫµ ∼ kµ, and this can be understood as a consequence of current conser-

vation, thinking about the current as the source for Aµ.

To compute the differential cross section, we square this and multiply it by the 2 → 2

phase space factor. It simplifies to sum over final state spins and average over initial

state ones, since then we can use the completeness relations for the external spinors or

polarizations.

As another example, consider e−(p)e+(q) → e−(p′)e+(q′) at tree level. There is then

both an s-channel and a t-channel diagram. Or we could consider e+e− → µ+µ− and then

there is only the s-channel diagram. The s-channel term is

iA = ūr
′

(p′)(−ieγµ)vs
′

(q′)
−i

k2
(gµν −

(1− ξ)kµkν
k2

)v̄s(q)(−ieγν)ur(p)
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with k = p + q = p′ + q′. We can now verify that this is independent of ξ, since e.g.

v̄2(q)/kur(p) = 0, thanks to /pur(p) = mur(p) and v̄s(q)q/ = −mv̄s(q).

Other examples, e+e− → e+e− vs e−e− → e−e−. The two are related by crossing

symmetry. Mention e−e∓ → e−e∓ and the Coulomb potential: opposites attract and

same sign charges repel. Contrast this with the scalar Yukawa case, where the potential is

always attractive. Because here v̄γ0v → +2m, whereas in the scalar case got v̄v →= −2m.
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