
12/3/19 Lecture outline

• Recap: we have discussed spin 0 and spin 1/2 quantum fields. Now move up to spin

1, i.e. the ( 1
2
, 1
2
) representation of the Lorentz group. Next quarter, you’ll learn about

renormalizability; there are associated complications with quantizing fields of spin greater

than 1. The primary case is that of gauge fields: these are the force carriers. Aside:

examples with spin 1 also include non-fundamental, composite fields, e.g. spin 1 mesons.

• Symmetries can be global or local. In the local case, they actually are not re-

ally symmetries but instead are associated with a redundant description of the physics:

configurations differing by a local symmetry are physically identified. In the path inte-

gral description, we should not sum over configurations differing by a local symmetry: it

would be over-counting. Global symmetries can be (and generally are) only approximate

symmetries, whereas local symmetries must be exact (or the path integral would be ill

defined). Examples of approximate global symmetries are charge conjugation, parity, and

time reversal; these are also examples of discrete symmetries, and they are violated in

the Standard Model by the weak interactions (though CPT is conserved, as follows from

Lorentz symmetry). An example of a global symmetry is baryon number and lepton num-

ber conservation; they are preserved by the Standard Model Lagrangian. Some global

symmetries are violated by quantum effects (anomalies, or more precisely instantons).

The local gauge symmetry of the Standard Model is SU(3)C ×SU(2)W ×U(1)Y . The

SU(3)C symmetry is confined. The SU(2)W × U(1)Y symmetry is spontaneously broken

by a Bose condensate of the Higgs field down to U(1)EM . Correspondingly, the W± and

Z0 force carriers are massive, and the photon is massless.

• The Dirac Lagrangian L = ψ̄(i/∂−m)ψ preserves a global U(1) symmetry ψ → eifψ

with f a constant. The associated Noether conserved current is jµ = ψ̄γµψ, which of

course transforms as a 4-vector under Lorentz transformations. For m = 0 the global

symmetry is actually U(1)L×U(1)R acting on the ψL,R = PL,Rψ, where PL,R = 1
2(1±γ5).

Now consider the Dirac Lagrangian for N Dirac Fermions L =
∑N

a=1 ψ̄
a(i/∂ −ma)ψa.

More generally, the mass m could be a N ×N matrix; here we are taking it to be diagonal.

If the ma are all different, there is a U(1)N symmetry. If the ma are all the same, it

enhances to U(N): ψa → U b
aψb with U †U = 1. For N > 1 this symmetry is non-Abelian

U1U2 6= U2U1.

• Consider the case of N = 1 massive Dirac Fermion. To make U(1) into a local

symmetry, we want to allow general f(x). Then we need to replace ∂µ → Dµ ≡ ∂µ+ieqAµ,

1



where eq is the charge of the field ψ (we can redefine eq → q but I am writing it this way

because e.g. e is the charge of the electron and α = e2/4πh̄c ∼ 1/137 plays the role of a

coupling constant in quantum electrodynamics, and q is observed to be quantized to be

integers). Under the local U(1) transformation ψ → e−ieqf(x)ψ and eAµ → eAµ + ∂µf ,

and then Dµψ → (∂µ + ieq(Aµ + ∂µf)(e
−ieqfψ) = e−ieqfDµψ transforms covariantly (i.e.

nicely, with just an overall phase).

So the Dirac equation with a local gauge symmetry is L = ψ̄(i /D − m)ψ = ψ̄(i/∂ −

m)ψ − Aµj
µ where jµ = eqψ̄γµψ is the associated current. This is the usual way that

electromagnetic currents couple in a Lagrangian density. The Lagranian is invariant under

a gauge transformation δAµ = ∂µf thanks to current conservation ∂µj
µ = 0.

Next step: include kinetic terms for Aµ (corresponding to the Maxwell Lagrangian)

and then quantize Aµ.

• Consider a Lagrangian for a spin 1 quantum field Aµ. The components of Aµ will

satisfy something like a KG equation, being massive or massless. We’ll start with the

massive case first, as a warmup for the massless case. Physically, this could be e.g. the Zµ

massive vector bosons of the electroweak force.

For the massive vector mesons, write down the general lagrangian:

L = −1
2 (∂µA

ν∂µA
ν + a∂µA

µ∂νA
ν + bAµA

µ).

The sign is chosen so that the kinetic terms of the spatial components have the right

sign. Write the EOM:

−∂2Aν − a∂ν(∂ ·A) + bAν = 0,

and note plane wave solutions Aµ(x) = ǫνe
−ik·x solves it if k2ǫν +akν(k · ǫ)+ bǫν = 0. The

longitudinal solutions have ǫµ ∝ kµ and have mass µ2
L = −b/(1 + a). The transverse have

mass µ2
T = −b. Can eliminate the uninteresting longitudinal solution by taking a = −1

and b 6= 0, then write Proca lagrangian in terms of Fµν = ∂µAν − ∂νAµ

L = −
1

4
FµνF

µν + 1
2
µ2AµA

µ

Each component Aµ satisfies the KG equation with mass µ. Can choose ǫ(±) =
1√
2
(0, 1,∓i, 0) and ǫ(0) = (0, 0, 0, 1), where the label is the value of Jz of the spin 1 vector.

Normalize by ǫ(r)∗ · ǫ(s) = −δrs and
∑

r ǫ
(r)∗
µ ǫ

(r)
ν = −gµν +

kµkν

µ2 .

The conjugate momenta to Aµ are π0 = ∂L/∂Ȧ0 = 0, and πi = ∂L/∂Ȧi = −F 0i = Ei.

Then H = −1
2(F0iF

0i − 1
2FijF

ij + µ2AiA
i − 1

2µ
2A0A

0) ≥ 0.
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