
11/27/19 Lecture outline

• Continue from last time. We quantized the Fermion field

ψ(x) =
2
∑

r=1

∫

d3p

(2π)32Ep

(

br(p)ur(p)e−ipx + cr†(p)vr(p)eipx
)

where (/p−m)us(p) = 0, (/p+m)vr(p) = 0, and

ūr(p)us(p) = −v̄r(p)vs(p) = 2mδrs, ūrvs = v̄rus = 0.

2
∑

r=1

ur(p)ūr(p) = γµpµ +m,
2
∑

r=1

vr(p)v̄r(p) = γµpµ −m

first by canonical quantization with equal time anticommutation relations, and then

{br(p), bs†(p′)} = δrs(2π)32Epδ
3(~p− ~p′), {cr(p), cs†(p′)} = δrs(2π)32Epδ

3(~p− ~p′).

Alternatively, we can use the path integral. Let ψ(x) and ψ̄(x) be Grassmann valued

(anticommuting) functions (vs operators in canonical quantization). The path integral

partition function for sources α(x) and ᾱ(x) is

Z[α(x), ᾱ(x)] = N

∫

[dψ(x)][dψ̄(x)] exp

(

i

h̄

∫

d4x[L+ ᾱ(x)ψ(x) + ψ̄(x)α(x)]

)

.

where N−1 is the vacuum bubble normalization such that Z[0, 0] = 1. The Grassmann

version of the Gaussian integral is

∫

dΘdΘ̄ exp[i(Θ̄, AΘ) + i(ᾱ,Θ) + i(Θ̄, α)] = det(iA) exp(−i(ᾱ, A−1α).

Thus for the case of the free Dirac equation we get (ψ/h̄→ Θ and (i/∂ −m)h̄→ A)

ZDirac[α, ᾱ] = exp

(

−
1

h̄

∫

d4xd4yᾱ(x)S(x− y)α(y)

)

where

(i/∂x −m)S(x− y) = iδ4(x− y) so S(x− y) =

∫

d4p

(2π)4
i

/p−m+ iǫ
e−ip(x−y).

Then see e.g.

〈Tψ(x)ψ̄(y)〉 = (
h̄

i
)2

δ

δᾱ(x)

δ

δα(y)
= h̄S(x− y).
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• Consider perturbation theory for an interacting theory. As an example, consider our

old friend toy model of nucleons and pions, now upgraded to be more realistic by making

the nucleons Fermions. Applications: this is Yukawa’s original model for explaining the

attraction between nucleons. It works. We’ll see how the potential is always attractive,

whether the nucleon charges are the same or opposite sign. This model will also set the

stage for quantum electrodynamics (QED), where the scalar meson is replaced with the

spin 1 photon and the nucleons are replaced with electrons. Here the rule that opposites

attract and same sign charges repel comes from the difference between spin 1 vs spin 0 force

carries. Finally, this model illustrates how the Higgs scalar interacts with the fundamental

fermions of Nature.

L = ψ̄(i/∂ −m)ψ + 1
2 (∂φ)

2 − 1
2µ

2φ2 − gφψ̄aΓabψb.

• Let’s call the particle states nucleons and anti-nucleons (we could also call them

electrons and positrons etc):

|N(p, r)〉 = b(p)r†|0〉 |N̄(p, r)〉 = cr†(p)|0〉.

Then

〈0|ψ(x)|N(p, r)〉 = e−ipxur(p), 〈N(p, r)|ψ̄(x)|0〉 = eipxūr(p).

Incoming fermions get a factor of ur(p), outgoing fermions get ūr(p); incoming antifermions

gets v̄r(p), and outgoing antifermions get vr(p). Write the amplitude by following the

arrows backwards, from the head to the tail. We can think of the amplitudes either in

terms of our original description using Dyson’s formula and Wick contractions, or in terms

of the LSZ description.

• Compute amplitudes in the (spin 1
2 ) nucleon + (scalar) meson toy model.

Tinkertoy pieces:

L ⊃ ψ̄(i/∂ −m)ψ → fermion propagator:
i

/p−m+ iǫ
,

L ⊃ 1
2∂φ∂φ− 1

2µ
2φ2 → scalar propagator:

i

p2 − µ2 + iǫ
,

L ⊃ −gφψ̄aΓabψb(x) → scalar, fermion vertex − igΓ,

where the index a, b runs over the four fermion components (spin up and down for fermion

and anti-fermion), so Γ is a 4× 4 matrix (natural choices are Γ = 14×4 or Γ = iγ5, where

recall γ5 = −iγ0γ1γ2γ3, and the i is there to keep L† = L, since (γ0γ5) is anti-hermitian).
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Incoming fermions get a factor of ur(p), outgoing fermions get ūr(p); incoming an-

tifermions gets v̄r(p), and outgoing antifermions get vr(p). The amplitude has indices

r = 1, 2 for each external fermion, which accounts for the external fermion’s spin. For in-

ternal fermion propagators we sum over the four fermion indices, which is accomplished by

matrix multiplication of the above tinkertoy pieces, with Tr put in as appropriate. Write

the amplitude by following the arrows backwards, from the head to the tail. The propa-

gator for an anti-Fermion has the arrow reversed and by CPT the propagator is related to

the Fermion’s propagator by /p→ −/p.

• Minus sign of fermion loop. This follows from working through the Dyson/Wick

procedure, accounting for the minus signs when fermions are exchanged, as needed to

bring contracted fermions next to each other. This relative minus sign for fermion vs

boson loops plays a big role in supersymmetry.

• Examples of amplitudes, computed to lowest non-trivial order: φ(p1) → Nr1(p′1) +

N̄r2(p′2), get iA = ūr1(p′1)(−igΓ)v
r2(p′2). Write out also e.g. φ(p2) + Nr1(p1) → Nr2(p′1)

gives iA = ūr2(p′1)(−igΓ)u
r1(p1) vs φ(p2) + N̄r1(p1) → N̄r2(p′1) has u → v and a relative

minus sign. Now consider Nr(p) + φ(q) → Nr′(p′) + φ(q′):

iA = (−ig)2ūr
′

(p′)Γ

(

i(/p+ q/+m)

(p+ q)2 −m2 + iǫ
+

i(/p− q/′ +m)

(p− q′)2 −m2 + iǫ

)

Γur(p).

N̄ + φ→ N̄ + φ:

iA = −(−ig)2v̄r(p)Γ

(

i(−/p− q/+m)

(p+ q)2 −m2 + iǫ
+

i(−/p+ q/′ +m)

(p− q′)2 −m2 + iǫ

)

Γvr
′

(p′).

N +N → N +N :

iA = −ig2

(

ūs
′

q′Γusqū
r′

p′Γurp
(q − q′)2 − µ2 + iǫ

−
ūs

′

q′Γurpū
r′

p′Γusq
(q − p′)2 − µ2 + iǫ

)

.

• Attractive Yukawa potential for both ψψ → ψψ, and also ψψ̄ → ψψ̄. Recall

ANR = −i
∫

d3~re−i(~p′−~p)·~rU(~r). For ψψ → ψψ, ANR ⊃ −i(−ig)2(2m) 1
(~p−~p′)2+µ2 when

the spins are unchanged. Gives U(~r) = −g2e−µr/4πr. For ψψ̄ → ψψ̄, amplitude differs by

sign, but so does v̄v, so again get attractive potential.

• Summing over polarizations for inclusive rates, and simplifications using

ūr(p)us(p) = −v̄r(p)vs(p) = 2mδrs, ūrvs = v̄rus = 0.
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2
∑

r=1

ur(p)ūr(p) = γµpµ +m,
2
∑

r=1

vr(p)v̄r(p) = γµpµ −m.

• Example Γ = iγ5, N + φ → N + φ, simplify iA. Compute |A|2 and average over

initial spins and sum over final spins. Simplify.

iA = ig2ūr
′

p′γ5

(

/p+ q/+m

(p+ q)2 −m2 + iǫ
+

/p− /q′ +m

(p− q′)2 −m2 + iǫ

)

γ5u
r
p,

iA = ig2ū(r
′)(p′)q/u(r)(p)F, F ≡

[

1

2p · q + µ2 + iǫ
+

1

2p′ · q + µ2 + iǫ

]

.

|A|2 = g4F 2qµqνTr[ū(p
′)r

′

γµu(p)rū(p)rγνu(p)r
′

].

Average over initial spins and sum over final ones (often physically relevant, and it simplifies

the expression, using the completeness relations)

1
2

∑

r,r′

|A|2 = 1
2g

2F 2qµqνTr[(/p
′ +m)γµ(/p+m)γν ]

= 2g4F 2[2(p′ · q)(p · q)− p · p′µ2 +m2µ2].
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