11/25/19 Lecture outline

e Recall from last time, the Dirac Lagrangian, whose EOM is the Dirac equation
Spirac = [ i@~ mys(e) > BOM (i~ m)u =0.

(Review the slash notation and e.g. @? = 9?1). Dirac wrote this down by thinking
about how to make sense of the square-root of the operator appearing in the KG equation,
V0,0 + m?2; indeed, —(iv*d,, + m)(iv*9,, — m) = 8% + m?.

The plane wave solutions of the Dirac equation are
w — us<p)e—ipx, w — ,Ur<p)eipx,

where
(p —m)u®(p) =0, ( +m)v" (p) = 0.

If we wanted to solve the eigenvalue equation pX = AX, we'd find four eigenvalues, and
four linearly independent eigenvectors, which form a basis. Here, because p?> = m?, we see
that A = 4+m, so there are two eigenvectors with A = m, i.e. u*, and two with A\ = —m,

T

i.e. v". Here 7, s both run over 1,2, labeling the four eigenvectors, each of which is a

4-component vector. These form a complete, orthogonal basis, with

=T =T —=T,,S

u" (p)u®(p) = —0"(p)v®(p) = 2md", u"v® =0v"u® =0.

S w(p)at(p) =vtpu+m, > 0" (p)0"(p) =y — m.

r=1
We’ll see how to evaluate Feynman diagrams involving fermions using just these relations.
These relations are basis - independent. Explicit expressions for u” and v* are less useful
and are also basis dependent.

For example, in the Dirac basis:

0 __ 1 0 i 0 O'i
V= 0 —1 9 v = _O.i 0 9

in the rest frame of a massive fermion, we get
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which can be boosted to get the solution for general p*. For the massless case,

u®(p) = (\/\/gé) v"(p) = (_\5\/])——0;7)
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e The general solution of the classical EOM is a superposition of these plane waves:

where ¢7¢ = nfy =1, and r, s label the basis choices, e.g £! = (é) and &2 = (0)
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d3p r r —ipx rT r ipx
0= [ g, OOV T 0

The theory is quantized by using H?/) = 0L/0(0gtp) = iyt and imposing

{0,209} =@ 7). ie  {pt2) (6P} =T~ 7).

Alternatively, we can quantize via a path integral; see below.

If we were to quantize with a commutator rather than anticommutator, get a Hamil-
tonian that is unbounded below, with ¢ creating antiparticles with negative energy. Shows
that spin % must have fermionic statistics, to avoid unitarity problems. This is a spe-
cial case of the general spin-statistics theorem: unitarity requires integer spin fields to
be quantized as bosons (commutators) and half-integer spin to be quantized according to
Fermi-Dirac statistics (anti-commutators). Leads to the Pauli exclusion principle.

So the coefficients in the plane wave expansion get quantized to be annihilation and

creation operators as
{7 (p), 0" (p")} = 67 (2m)2E,8° (5~ ), {c"(p), > (p)} = 67 (2m)*2E,8° (5 — i),

with all other anticommutators vanishing.

e Aside on dimensional analysis [¢)] = 3/2, [u] = [v] = 1/2, [b] = [¢] = —1.

e Hamiltonian of the Dirac equation, with fermionic statistics, H = Hwﬂ - L =
Y(—i0;77 + m)y, and then H = [ d3zH gives

H = / @;éfg&mwpwp) + " (p)e" (p)),

good, b"T(p) creates a spin 1/2 particle of positive energy, and ch(p) creates a spin 1/2
particle of positive energy. The second term was re-ordered according to normal ordering —

the terms originally work out to have the opposite order and the opposite sign. Fermionic
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statistics gives the sign above, upon normal ordering, but Bose statistics would have given
the ¢"f¢” term with a minus sign, leading to H that is unbounded below. We need Fermionic
statistics for spin 1/2 fields to get a healthy theory.

e Do perturbation theory as before, but account for Fermi statistics, e.g. T'(¢(x1)¢(x2)) =
—T(¢(x2)1p(x1)) and likewise for normal ordered products. Anytime Fermionic variables
are exchanged, pick up a minus sign (and sometimes the additional term if the anti-
commutator is non-zero). Consider in particular the propagator

{¥(2), ¥(y)} = (ife + m)(D(z —y) — D(y — x)).

The Green’s function for (i@, —m) is the 1 (z)1(y) contraction (time ordered minus normal
ordered as before, and it is proportional to the unit operator so we can take expectation
value and then the normal ordered part vanishes)
- d*p  i(p+m)

0|7 (Y(x 0) =

OT@@HI0) = [ Gt
Vanishes for spacelike separated points. The momentum space fermion propagator is

1

The contraction of ()Y (y) is T(¥(x)Y(y))— : ¥(x)Y(y) : and can be shown to be a
c-number (analogous to the scalar field case). So it is the same as its vacuum expectation
value, and thus is the same as (0|T(1(z)(y))|0).

e Generating functional and path integral: Let () and ¢(x) be Grassmann valued

e—wp(z—y)

(anticommuting) functions (vs operators in canonical quantization). The path integral

partition function for sources a(z) and a(x) is

Zia(a). (o] = [lav@ldi@les (5 [ dtalt + ateto) + i) )

where N =1 is the vacuum bubble normalization such that Z[0,0] = 1. The Grassmann

version of the Gaussian integral is
/d@d(:) expli(©, AB) +i(a, ©) +i(0, a)] = det(iA) exp(—i(a, A a).

Thus for the case of the free Dirac equation we get (¢¥)/h — © and (i) — m)h — A)

Zoiwlasal = exp (1 [ dadva)s(a —y)at))

where
; ; d! g —ip(z—y
(ify — m)S(x — y) = i6*(x — y) S0 S(x_y):/(QWZ)j‘lﬁ—m—l—iee (z—y)
Then see e.g. . 5 5
(TY(@)y(y) = (7)== =hS(z —y).



