11/18/19 Lecture outline

e Continue from last time, Feynman path integral. As in the SHO QM example, we
can compute field theory Green’s functions via the generating functional (i.e. input a J(x)

and it outputs a number)

217 ()] = / (d] exp(i / a4 + J(2)6(x)]).

Use it to compute Greens functions

G (z1,.. .2 O\THd) 2:)[0)/{0[0) = Z[J]™* ﬁ <

J=1

) ZL| ,_y-
We can write this also as

o0 1 n
=2 E/Hd%ﬂ(wl)---J(:cn>G<”>(a:1,...xn).
n=0 " i=1

where we now just remember to normalize Z[J = 0] = 1. In general, use the generating
functional Z[.J] to compute time ordered products, it reproduces Wick’s theorem, Feynman
diagrams, and thus S-matrix amplitudes (via LSZ).

Used

N .
1 . _ C A
11 / 465 exp(1 (5 Aigdndn + Jio)) = (2ih) ¥/2(det A) /2 exp(—iA} JiJ /2h)
i=1
E.g. for a free KG field, A = (—9% — m? + i¢), so For Klein-Gordon theory,

Zo= [lgletsn 5= [ dag(a)(-0* — m¥)o()

where we integrated by parts and dropped a surface term. This is completely analogous
to our QM SHO example, simply replacing % + w? — je there with 92 + m? — ie here —
again, the ie is to make the oscillating gaussian integral slightly damped. I.e. we should
take S = 3 [d*z¢(z)(—0? — m? + ie)¢(x), with € > 0, and then ¢ — 0. Note that
the operator is A ~ —9% — m? 4+ ie, which in momentum space is p> — m? + ie. Looks
familiar: it’s the Feynman ie prescription, which here comes simply from ensuring that the
integrals converge! This is why the path integral automatically gives the time ordering of
the products. So
Zo = const(det(—0? — m? +ie)) ~V/2.
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The generating functional is
Zyrld) = ZolJ) = exp(~ 307" [ dad'y (@) Dt )T (0), (1)

with (=02 —m? +ie)Dp(z—y) = id*(x —y) and Dp(z—y) = [ (gjr’;ﬁﬁ%m& =GO (z,y).

m2+ie

e There is another nice combinatoric fact:
W] =lnZ[J Z py /Hd xiJ(z1) ... J(x )Gg;mected(xl,...mn),

(n) : . .
where G} . (x1,...7,) are the connected diagram Greens functions. For example, in

the free field case we have Gconnected(a:)(l) = ZLM(I) [J] = (p(x)); = zfd4yDF(33 —

Y)J(y) and G2 (@1, m2) = (To(@)o(y))s — (6(2))5(6(y))s = Dp(z1 — 22), and
G2 . = 0. The LSZ result has those factors of [[/2,"(p? — m2)G™+™) to ampu-

connecte

tate the external legs, and that sets to zero the contributions of disconnected diagrams. So
it suffices to consider only Ggﬁ:ﬁlw 40 and thus W[J] is useful. Z[J] has a formal relation

to the partition function, and then W[.J] is related to free energy.

e Now let’s consider an interacting theory. Notice that

/[d¢] eXp(ﬁ[Sfree + Sznt [¢] + h / d4$J¢]> = eXp[%Sint[ (;f]])ZfTee[J]
So _
2] = N expl+ Sinel i) Zrecl ), @)

where N is an irrelevant normalization factor (independent of .J). The green’s functions

are then given by

f[d¢]¢($1) o ¢(£Bn) eXp(%SI[QS]) eXp[%Sfree]
f[d¢] eXp(lS] [¢]) eXp[%Sfree] ’

= Zif[ (—mw ) ZUN| 5y

(The denominator (in both lines) cancels off the vacuum bubble diagrams, which don’t

G(n) (1’1 .. $n> =

depend specifically on the Green’s function.)
e Tllustrate the above formulae, and relation to Feynman diagrams, e.g. G, G2

and G® in \¢* theory. The functional integral accounts for all the Feynman diagrammer;
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even symmetry factors etc. come out simply from the derivatives w.r.t. the sources, and

the expanding the exponentials,

GO, a) = = [ i) S L (-ii /d‘*y(—i)‘*L)NZO[J]} I
ZJ] i 0J(x5) = N! 40 5J(y)* J=0
etc. Consider, for example, the 4-point function G (z1, 2, 3, 24) = (T'o(x1) . .. $(4))/(0]0)
in %gb‘l. So take 4-fuctional derivatives w.r.t. the source, at points xy...x4, i.e.
§/8J(x1)...0/6J(x4). The O(A?) term thus comes from expanding the exponent in (1) to
quadratic order (4 J’s), corresponding to the disconnected diagrams with two propagators.
Each propagator ends on a point ;. This is like the 4-point function in the SHO home-
work. Now consider the O(A) contribution, coming from expanding out the interaction
part of the exponent in (2) to O(\). There are now 4 extra 6/0.J(y), for a total of 8, so
the contributing term comes from expanding the exponent in (1) to 4-th order, i.e. there
are 4 propagators. This gives the connected term, along with several disconnected terms.
Go through these terms and their combinatorics.

e Next topic: non-scalar fields (e.g. Fermions or spin 1 gauge fields).



