
11/18/19 Lecture outline

• Continue from last time, Feynman path integral. As in the SHO QM example, we

can compute field theory Green’s functions via the generating functional (i.e. input a J(x)

and it outputs a number)

Z[J(x)] =

∫

[dφ] exp(i

∫

d4x[L+ J(x)φ(x)]).

Use it to compute Greens functions

G(n)(x1, . . . xn) ≡ 〈0|T
n
∏

i=1

φ(xi)|0〉/〈0|0〉 = Z[J ]−1
n
∏

j=1

(

−i
δ

δJ(xi)

)

Z[J ]
∣

∣

J=0
.

We can write this also as

Z[J ] =
∞
∑

n=0

1

n!

∫ n
∏

i=1

d4xiJ(x1) . . . J(xn)G
(n)(x1, . . . xn).

where we now just remember to normalize Z[J = 0] = 1. In general, use the generating

functional Z[J ] to compute time ordered products, it reproduces Wick’s theorem, Feynman

diagrams, and thus S-matrix amplitudes (via LSZ).

Used

Z(Ji) ≡

N
∏

i=1

∫

dφi exp(
i

h̄
( 12Aijφiφi + Jiφi)) = (2πih̄)N/2(detA)−1/2 exp(−iA−1

ij JiJj/2h̄)

E.g. for a free KG field, A = (−∂2 −m2 + iǫ), so For Klein-Gordon theory,

Z0 =

∫

[dφ]eiS/h̄ S = 1
2

∫

d4xφ(x)(−∂2 −m2)φ(x),

where we integrated by parts and dropped a surface term. This is completely analogous

to our QM SHO example, simply replacing d2

dt2
+ ω2 − iǫ there with ∂2 +m2 − iǫ here –

again, the iǫ is to make the oscillating gaussian integral slightly damped. I.e. we should

take S = 1
2

∫

d4xφ(x)(−∂2 − m2 + iǫ)φ(x), with ǫ > 0, and then ǫ → 0+. Note that

the operator is A ∼ −∂2 − m2 + iǫ, which in momentum space is p2 − m2 + iǫ. Looks

familiar: it’s the Feynman iǫ prescription, which here comes simply from ensuring that the

integrals converge! This is why the path integral automatically gives the time ordering of

the products. So

Z0 = const(det(−∂2 −m2 + iǫ))−1/2.
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The generating functional is

Zfree[J ] = Z0[J ] = exp(−1
2
h̄−1

∫

d4xd4yJ(x)DF (x− y)J(y)), (1)

with (−∂2−m2+iǫ)DF (x−y) = iδ4(x−y) and DF (x−y) ≡
∫

d4k
(2π)4

ie−ik(x−y)

k2
−m2+iǫ = G(2)(x, y).

• There is another nice combinatoric fact:

iW [J ] ≡ lnZ[J ] =
∞
∑

n=0

1

n!

∫ n
∏

i=1

d4xiJ(x1) . . . J(xn)G
(n)
connected(x1, . . . xn),

where G
(n)
connected(x1, . . . xn) are the connected diagram Greens functions. For example, in

the free field case we have Gconnected(x)
(1) = h̄

i
δ

δJ(x)W [J ] = 〈φ(x)〉J = i
∫

d4yDF (x −

y)J(y) and G
(2)
connected(x1, x2) = 〈Tφ(x)φ(y)〉J − 〈φ(x)〉J〈φ(y)〉J = DF (x1 − x2), and

G
(n>2)
connected = 0. The LSZ result has those factors of

∏n+m
i=1 (p2i − m2

i )G
(n+m) to ampu-

tate the external legs, and that sets to zero the contributions of disconnected diagrams. So

it suffices to consider only G
(n+m)
connected, and thus W [J ] is useful. Z[J ] has a formal relation

to the partition function, and then W [J ] is related to free energy.

• Now let’s consider an interacting theory. Notice that

∫

[dφ] exp(
i

h̄
[Sfree + Sint[φ] + h̄

∫

d4xJφ]) = exp[
i

h̄
Sint[−i

δ

δJ
])Zfree[J ].

So

Z[J ] = N exp[
i

h̄
Sint[−i

δ

δJ
])Zfree[J ], (2)

where N is an irrelevant normalization factor (independent of J). The green’s functions

are then given by

G(n)(x1 . . . xn) =

∫

[dφ]φ(x1) . . . φ(xn) exp(
i
h̄
SI [φ]) exp[

i
h̄
Sfree]

∫

[dφ] exp( i
h̄SI [φ]) exp[

i
h̄Sfree]

,

=
1

Z[J ]

n
∏

j=1

(

−ih̄
δ

δJ(xj)

)

· Z[J ]
∣

∣

J=0
.

(The denominator (in both lines) cancels off the vacuum bubble diagrams, which don’t

depend specifically on the Green’s function.)

• Illustrate the above formulae, and relation to Feynman diagrams, e.g. G(1), G(2)

and G(4) in λφ4 theory. The functional integral accounts for all the Feynman diagrammer;
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even symmetry factors etc. come out simply from the derivatives w.r.t. the sources, and

the expanding the exponentials,

G(n)(x1, . . . xn) =
1

Z[J ]

n
∏

j=1

(−i
δ

δJ(xj)
)

∞
∑

N=1

1

N !

(

−i
λ

4!h̄

∫

d4y(−i)4
δ4

δJ(y)4

)N

Z0[J ]
∣

∣

J=0
.

etc. Consider, for example, the 4-point functionG(4)(x1, x2, x3, x4) ≡ 〈Tφ(x1) . . . φ(x4)〉/〈0|0〉

in λ4

4! φ
4. So take 4-fuctional derivatives w.r.t. the source, at points x1 . . . x4, i.e.

δ/δJ(x1) . . . δ/δJ(x4). The O(λ0) term thus comes from expanding the exponent in (1) to

quadratic order (4 J’s), corresponding to the disconnected diagrams with two propagators.

Each propagator ends on a point xi. This is like the 4-point function in the SHO home-

work. Now consider the O(λ) contribution, coming from expanding out the interaction

part of the exponent in (2) to O(λ). There are now 4 extra δ/δJ(y), for a total of 8, so

the contributing term comes from expanding the exponent in (1) to 4-th order, i.e. there

are 4 propagators. This gives the connected term, along with several disconnected terms.

Go through these terms and their combinatorics.

• Next topic: non-scalar fields (e.g. Fermions or spin 1 gauge fields).
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