
11/13/19 Lecture outline

• Continue from last time, Feynman path integral. First consider QM:

U(xb, T ; xa, 0) = 〈xb|e−iHT/h̄|xa〉 =
∫

[dx(t)]eiS[x(t)]/h̄.

Feynman intuited the path integral by thinking about double and then multiple slit inter-

ference, where we should add the phase contributions - which turn out to be eiS/h̄ - over

every path. He then considered the limit where empty space is regarded as having barriers

that are full of slits at every location in space. This suggests that the path integral can be

broken into time slices, as way to define it. E.g. free particle

(−im

2πh̄ǫ

)N/2 ∫ N−1∏

i=1

dxi exp[
im

2h̄ǫ

N∑

i=1

(xi − xi−1)
2]

Where we take ǫ → 0 and N → ∞, with Nǫ = T held fixed. Do integral in steps. Apply

expression for real gaussian integral (valid: analytic continuation):

∫ ∞

−∞

dφ exp(iaφ2) =

√
iπ

a
.

where we analytically continued from the case of an ordinary gaussian integral. Think of

a as being complex. Then the integral converges for Im(a) > 0, since then it’s damped.

To justify the above, for real a, we need the integral to be slightly damped, not just purely

oscillating. To get this, take a → a + iǫ, with ǫ > 0, and then take ǫ → 0+. We’ll see

that this is related to the iǫ that we saw in the Feynman propagator, which gave the T

ordering. After n− 1 steps, get integral:

(
2πih̄nǫ

m

)−1/2

exp[
m

2πih̄nǫ
(xn − x0)

2].

So the final answer is

U(xb, xa;T ) =

(
2πih̄T

m

)−1/2

exp[im(xb − xa)
2/2h̄T ].

Note that the exponent is eiScl/h̄, where Scl is the classical action for the classical

path with these boundary conditions.
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Can also derive the path integral from standard QM formulae, with operators, by

introducing the time slices and a complete set of q and p eigenstates at each step.

〈q′, t′|q, t〉 =
∫ ∫ N∏

j=1

dqj〈q′|e−iHδt|qN−1〉〈qN−1|e−iHδt|qN−2〉 . . . 〈q1|e−iHδt|q〉,

where we’ll take N → ∞ and δt → 0, holding t′ − t ≡ Nδt fixed. Note that even

though eA+B = eAeBe−
1
2
[A,B]+..., we’re not going to have to worry about this for δt → 0:

e−iHδt = e−iδtp2/2me−iδtV (q)eO(δt2). Now note

〈q2|e−iHδt|q1〉 =
∫

dp1〈q2|e−iδtp2/2m|p1〉〈p1|e−iV (q)δt|q1〉,

=

∫
dp1e

−iH(p1,q1)δteip1(q2−q1).

This leads to

〈q′, t′|q, t〉 =
∫
[dq(t)][dp(t)] exp(i

∫ t′

t

dt(p(t)q̇(t)−H(p, q))),

and taking H quadratic in momentum and doing the p gaussian integral recovers the

Feynman path integral.

• The same derivation as above leads to e.g.

〈q4, t4|T q̂(t3)q̂(t2)|q1, t1〉 =
∫
[dq(t)]q(t3)q(t2)e

iS/h̄,

where the integral is over all paths, with endpoints at (q1, t1) and (q4, t4).

A key point: the functional integral automatically accounts for time or-

dering! Note that the LHS above involves time ordered operators, while the RHS has a

functional integral, which does not involve operators (so there is no time ordering). The

fact that the time ordering comes out on the LHS is wonderful, since know that we’ll

need to have the time ordering for using Dyson’s formula, or the LSZ formula, to compute

quantum field theory amplitudes. The path integral generalizes immediately to quantum

fields, and to all types of fields (scalars, fermions, gauge fields).

• Generalized Gaussian integrals:

Z(Ji) ≡
N∏

i=1

∫
dφi exp(−Bijφiφi + J̃iφi) = πN/2(detB)−1/2 exp(B−1

ij J̃iJ̃j/4).
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Evaluate via completing the square: the exponent is −(φ,Bφ) + (J̃ , φ) = −(φ′, Bφ′) +
1
4
(J̃ , B−1J̃), where φ′ = φ− 1

2
B−1J̃ . Again, we can similarly evaluate Gaussian integrals

with phases in the exponent by analytic continuation

Z(Ji) ≡
N∏

i=1

∫
dφi exp(

i

h̄
( 12Aijφiφi + Jiφi)) = (2πih̄)N/2(detA)−1/2 exp(−iA−1

ij JiJj/2h̄).

replacing B → −i( 1
2
A+ iǫ)/h̄ and redefining J̃ → iJ/h̄ for later convenience.

• Introduce sources for the fields as a trick to get the time order products from deriva-

tives of a generating function (or functional). Consider QM with Hamiltonian H(q, p),

modified by introducing a source for q, H → H − J(t)q. (We could also add a source for

p, but don’t bother doing so here.) Consider moreover replacing H → H(1 − iǫ), with

ǫ → 0+, which has the effect of projecting on to the ground state at t → ±∞. As men-

tioned, this’ll be related to the iǫ of the Feynman propagator. Consider the vacuum-to

vacuum amplitude in the presence of the source,

〈0|0〉J =

∫
[dq] exp[i

∫
dt(L+ J(t)q)/h̄] ≡ Z[J(t)].

Once we compute Z[J(t)] we can use it to compute arbitrary time-ordered expectation

values. Indeed, Z[J ] is a generating functional1 for time ordered expectation values of

products of the q(t) operators:

〈0|
n∏

j=1

Tq(tj)|0〉 =
n∏

j=1

1

i

δ

δJ(tj)
Z[J ]

∣∣
J→0

,

where the time evolution e−iHt/h̄ is accounted for on the LHS by taking the operators

in the Heisnberg picture. We’ll be interested in such generating functionals, and their

generalization to quantum field theory (replacing t → (t, ~x)).

• We’ll want to compute amplitudes like

〈0|∏i Tq(ti)|0〉J=0

〈0|0〉J=0

and for these the detA factor in the Gaussian integrals will cancel between the numerator

and the denominator. This is related to the cancellation of vacuum bubble diagrams.

1 Recall how functional derivatives work, e.g. δ

δJ(t)
J(t′) = δ(t− t

′).
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• Let’s apply the above to compute the generating functional for the example of QM

harmonic oscillator (scaling m = 1),

Z[J(t)] =

∫
[dq(t)] exp(− i

h̄

∫
dt

[
1
2q(t)(

d2

dt2
+ ω2)q(t)− J(t)q(t)

]
).

This is analogous to the multi-dimenensional gaussian above, where i is replaced with the

continuous label t,
∑

i →
∫
dt etc. and the matrix Aij is replaced with the differential

operator A → −( d2

dt2 +ω2 − iǫ), where the iǫ is to damp the gaussian, as mentioned above.

Doing the gaussian gives a factor of
√
detB which we don’t need to compute now because

it’ll cancel, and the exponent with the sources from completing the square, which is the

term we want, so

〈0|0〉J
〈0|0〉J=0

= “ exp[−i12A
−1
ij JiJj/h̄]” = exp[−1

2 h̄

∫
dtdt′J(t)G(t− t′)J(t′)],

with G(t) the Green’s function for the oscillator, (−∂2
t − ω2 + iǫ)G(t) = iδ(t),

G(t) =

∫ ∞

−∞

dE

2πh̄

i e−iEt/h̄

E2/h̄2 − ω2 + iǫ
=

1

2ω
e−iω|t|. (1)

The iǫ here does the same thing as in the Feynman propagator: the pole at E = h̄ω is

shifted below the axis and that at E = −h̄ω is shifted above. Equivalently, we can replace

E → E(1 + iǫ), to tilt the integration contour below the −ω pole and above the +ω pole.

Note then that e−iEt/h̄ → e−iEt/h̄eEtǫ/h̄, which projects on to the vacuum for t → ∞ (the

iǫ projects on to the vacuum in the far future and also the far past).

For t > 0, the E contour is closed in the LHP and the residue is at E = h̄ω, while for

t < 0 the contour is closed in the UHP, with residue at E = −h̄ω.

• Now that we know the generating functional, we can use it to compute time ordered

expectation values via

〈0|T
n∏

i=1

φH(ti)|0〉/〈0|0〉 = Z−1
0

∫
[dφ]

n∏

i=1

φ(ti) exp(iS/h̄) = Z−1
0

n∏

i=1

h̄

i

δZ[J ]

δJ(ti)
|J=0.

with Z0 =
∫
[dφ] exp(iS/h̄).

• On to QFT and the Klein-Gordon theory,

Z0 =

∫
[dφ]eiS/h̄ S = 1

2

∫
d4xφ(x)(−∂2 −m2)φ(x),
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where we integrated by parts and dropped a surface term. This is completely analogous

to our QM SHO example, simply replacing d2

dt2 + ω2 − iǫ there with ∂2 +m2 − iǫ here –

again, the iǫ is to make the oscillating gaussian integral slightly damped. I.e. we should

take S = 1
2

∫
d4xφ(x)(−∂2 − m2 + iǫ)φ(x), with ǫ > 0, and then ǫ → 0+. Note that

the operator is A ∼ −∂2 − m2 + iǫ, which in momentum space is p2 − m2 + iǫ. Looks

familiar: it’s the Feynman iǫ prescription, which here comes simply from ensuring that the

integrals converge! This is why the path integral automatically gives the time ordering of

the products. So

Z0 = const(det(−∂2 −m2 + iǫ))−1/2.
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