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where dΠLIPS is the Lorentz invariant phase space for the final states. For two body final
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2 get ∂(E1+E2)/∂p1 = p1ET /E1E2 and finally

D = p1dΩ1/16π
2ET . This should be divided by 2! (i.e. nf !) if the final states are identical.

• Summary:
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(divide by 2! if identical final states).

• Example. For µ2 > 4m2, consider φ → N̄N decay in the toy model. A = −g+O(g3),

and get
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For 2 → 2 scattering in the CM frame,
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where we used |~v1 − ~v2| = p1(E
−1
1 + E−2

2 ) = piET /E1E2 in the CM frame, and pi is the

magnitude of the initial 3-momentum, and pf is that of the final momentum; they can be

different if the initial and final states are of particles of different masses, e.g. e+e− → µ+µ−.

• Let’s now consider the theory with L = 1
2 (∂φ)

2− 1
2m
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4, with real scalar field

φ and λ is a real coupling constant that we will take to be small and treat in perturbation

theory. The requirement that the potential V (φ) = 1
2
m2φ2 + λ

4!
φ4 be bounded below

requires λ ≥ 0. There is a Z2 symmetry φ → −φ. For m2 > 0, the potential has a single
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vacuum at φ = 0. For m2 < 0 there are two vacua at 〈φ〉; this is an example of spontaneous

(discrete) symmetry breaking, which will be discussed more later. We will take m2 > 0.

Consider φ(p1)+φ(p2) → φ(p′1)+φ(p′2) scattering. The leading order amplitude isA =

−λ+O(λ2). The associated Born Approximation potential is V (~r) = − λ
(2m)2

∫
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3(~r). Comment about the combinatorics. Write down the Feynman rules.

Now consider the O(λ2) correction to 2 → 2 scattering: iA ⊃ (−iλ)2(F (s) + F (t) +

F (u)) where F (p2) ≡ 1
2

∫
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where the 1
2 is a symmetry factor.

The integral is log divergent for large k and requires being regulated and renormalization;

this will be discussed next quarter.

• Amplitudes are computed from Feynman diagrams upon amputating the external

propagators and putting the external states on shell (imposing p2i = m2
i for the initial and

final states). It is also useful to consider the quantities without the external propagators

amputated or on shell; these quantities are called Greens functions.

⋆ Reading for the upcoming part: Coleman lecture notes pages 140-175.

• Brief introduction to a better description of QFT and perturbation theory. ]Define

the true vacuum |Ω〉 such thatH|Ω〉 = 0, and 〈Ω|Ω〉 = 1. The true vacuum of an interacting

QFT is a complicated beast – it can be thought of roughly as a soup of particle-antiparticle

states – it can not be solved for solved for exactly. (Progress: in classical mechanics, can

solve 2 body problem exactly, but ≥ 3 body only approximately; in GR, can solve 1 body

problem exactly, but ≥ 2 body only approximately; in QM can generally solve even only

1-body problem only approximately, but at least the 0-body problem is trivial; in QFT,

even the 0-body problem is not exactly solvable.)

Define Green functions or correlation functions by

G(n)(x1, . . . xn) = 〈Ω|TφH(x1) . . . φH(xn)|Ω〉,

where φH(x) are the full Heisenberg picture fields, using the full Hamiltonian.

Now show that

G(n)(x1 . . . xn) =
〈0|Tφ1I(x1) . . . φnI(xn)S|0〉

〈0|S|0〉
,

where |0〉 is the vacuum of the free theory, and φiI are interaction picture fields, and

the S in the numerator and denominator gives the interaction-Hamiltonian time evolution

from −∞ to xn, then from xn to xn−1 etc and finally to t = +∞. To show it, take

t1 > t2 . . . > tn and put in factors of UI(ta, tb) = T exp(−i
∫ tb
ta

HI) to convert φI to φH ,

using φH(xi) = UI(ti, 0)
†φI(xi)UI(ti, 0).
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