10/30/19 Lecture outline

e Last time:
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where dIl;;ps is the Lorentz invariant phase space for the final states. For two body final

states (in CM frame): D = [dll;;ps = [ (27T)32E1 (27?):?22]3 (2m)463 (pL +p2)6(Ey + By — E7)
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D= / mp%dpldfll@ﬂé(fﬁ + Ey — E7).

Using Ey = \/p? + m7 and Ey = /p? + m3 get O(FE1+ E3)/0p1 = p1 Er/E1F> and finally
D = p1d2;/167% E7. This should be divided by 2! (i.e. n¢!) if the final states are identical.

e Summary:
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D _voay(cmy = (divide by 2! if identical final states).
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e Example. For p? > 4m?, consider ¢ — NN decay in the toy model. A = —g+O(g?),
and get
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For 2 — 2 scattering in the CM frame,
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where we used |} — U] = pl(El_1 + E2—2) = p;Er/E1Ey in the CM frame, and p; is the
magnitude of the initial 3-momentum, and py is that of the final momentum; they can be
different if the initial and final states are of particles of different masses, e.g. eTe™ — uTpu™.

e Let’s now consider the theory with £ = (6gb) — §m 2¢2 — %gb‘l, with real scalar field
¢ and A is a real coupling constant that we will take to be small and treat in perturbation
theory. The requirement that the potential V(¢) = %m2¢>2 + %(ﬁ‘l be bounded below
requires A > 0. There is a Zy symmetry ¢ — —¢. For m? > 0, the potential has a single
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vacuum at ¢ = 0. For m? < 0 there are two vacua at (¢); this is an example of spontaneous
(discrete) symmetry breaking, which will be discussed more later. We will take m? > 0.
Consider ¢(p1)+¢(p2) — ¢(p))+d(ph) scattering. The leading order amplitude is A=
—)\+(’)()\2) The associated Born Approximation potential is V' (7) = (zm)Q [ A (zﬂ)g, DT —
(2m)2 §3(7). Comment about the combinatorics. Write down the Feynman rules.
Now Con81der the O()\Q) Correctlon to 2 — 2 scattering: iA D (—i\)2(F(s) + F(t) +

F(u)) where F(p f (27T)4 T m2+16 (k+p)2_m2+% where the % is a symmetry factor.

The integral is log dlvergent for large k£ and requires being regulated and renormalization;
this will be discussed next quarter.

e Amplitudes are computed from Feynman diagrams upon amputating the external
propagators and putting the external states on shell (imposing p? = m? for the initial and
final states). It is also useful to consider the quantities without the external propagators
amputated or on shell; these quantities are called Greens functions.

* Reading for the upcoming part: Coleman lecture notes pages 140-175.

e Brief introduction to a better description of QFT and perturbation theory. |Define
the true vacuum |Q2) such that H|Q2) = 0, and (Q|Q2) = 1. The true vacuum of an interacting
QFT is a complicated beast — it can be thought of roughly as a soup of particle-antiparticle
states — it can not be solved for solved for exactly. (Progress: in classical mechanics, can
solve 2 body problem exactly, but > 3 body only approximately; in GR, can solve 1 body
problem exactly, but > 2 body only approximately; in QM can generally solve even only
1-body problem only approximately, but at least the 0-body problem is trivial; in QFT,
even the 0-body problem is not exactly solvable.)

Define Green functions or correlation functions by

G (z1,...20) = (QUTou(x1) ... o (zn)|),

where ¢ (x) are the full Heisenberg picture fields, using the full Hamiltonian.
Now show that
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G(n) (1’1 . l’n) =

where |0) is the vacuum of the free theory, and ¢;; are interaction picture fields, and
the S in the numerator and denominator gives the interaction-Hamiltonian time evolution
from —oo to z,, then from x, to x,_; etc and finally to ¢t = 4o00. To show it, take
t;1 > tg... > t, and put in factors of Us(ts,t,) = T exp(—1t Lt;’ Hy) to convert ¢ to ¢,
using ¢ (i) = Ur(ti,0) ¢r(2:)Ur(ts,0).



