
Physics 105a, Ken Intriligator lecture 7, October 19, 2017

• Last time: Lψ(t) = f(t), where L is a linear differential operator:

L ≡

N
∑

n=0

an
dn

dtn
.

The solution is given by a superposition of homogenous and particular solutions: ψ =

ψh + ψp, where Lψh = 0, and Lψp = f(t). Find ψh = Re(
∑N

n=1
cne

snt), where cn

are the N expected constants of integration and sn are the solutions of the polynomial

equation
∑N

n=0
ans

n = 0. If solutions are degenerate (coinciding roots) get powers of t

as different solutions. Example: damped harmonic oscillator, get s2 + γs + ω2

0
= 0, so

s = 1

2
(−γ±

√

γ2 − 4ω2

0
). Note that we are solving this over the complex values of s, so we

always get two solutions. If γ2 > 4ω2

0
, this is the over damped case, and both solutions have

real s, i.e. the solutions are exponentials in t. For γ > 0, both solutions are exponentially

decaying for t→ +∞. If γ2 < 4ω2
0 (under-damped case) the solutions are s = −

1

2
γ ± iω1,

where ω1 =
√

ω2

0
−

1

4
γ, i.e. we get ψh(t) = e−

1

2
γt(A cos(ω1t) + B sin(ω1t)). If γ2 = 4ω2

0

(critically damped case), there seems to be only one solution. In the critically damped

SHO case, get ψh(t) = e−
1

2
γt(A+Bt).

We will later study some general methods to determine the particular solution to

Lψp(t) = f(t) for general f(t). For the moment, consider the case where f(t) = Ref0e
−iωt

and note that the particular solution can be found by an obvious guess: ψp(t) = ReCe−iωt.

Plugging in get
∑

n an(−iω)
nC = f0, which we can solve for C.

For example, for the damped SHO we get C = f0(−ω
2
− iωγ + ω2

0
)−1 = f0(ω

2

0
−

ω2 + iωγ)((ω2

0
− ω2)2 + γ2ω2)−1. The magnitude is largest for ωres =

√

ω2

0
−

1

2
γ2. The

imaginary part is a phase shift lag between the forcing motion and the oscillation.

• Now consider differential equations with boundary value conditions. For example,

consider Lψ = 0 with L = d2

dt2
− ω2, or L = d2

dx2 − k2. These are the same equation

mathematically, and physically we use different names because sometimes we have such

equations in time, and other times we have such equations in space. Suppose e.g. we try

to specify ψ(t) = ψ(t + T ); this only has a solution if T = 2π/ω. Likewise if we try to

specify ψ(x) = ψ(x+λ), there is only a solution if k = 2π/λ. Such equations and boundary

conditions e.g. give the allowed frequencies or wavenumber of waves on strings, or musical

instruments, or the allowed energy levels in quantum mechanics. This illustrates that

boundary value problems do not always have a solution - it depends on if the boundary

conditions are compatible, like trying to fit different pieces of a jigsaw puzzle together.
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Examples from waves on string, and musical instruments, with either zero displace-

ment or zero slope at ends. Plot examples using mathematica.

• Numerical solutions of boundary value problems by the shooting method. E.g.
d2y
dt2

= f(y, ẏ, t) with y(t0) = y0 and y(t1) = y1. Guess ẏ(t0) to try to get y(t1) = y1, and

adjust as needed. Example from Dubin 1.70.

• Think about solving Lψ = f in analogy with a matrix equation, where L is a matrix

and ψ and f are column vectors. Then ψh is in the nullspace of L, and ψp = L−1f , where

L−1 is the inverse in the directions orthogonal to the nullspace. We are literally doing this

when we numerically solve the differential equation by making the coordinate a lattice of

points, as in the Euler’s method example. Replace e.g. d
dt

→ Ln,m = (δn,m − δn−1,m)/∆t.

• Example from Dubin 1.6.3: L = d
dt

+ u0(t) via Euler’s method. Consider u0(t) = 1.

• Example from Dubin 1.4.4: Predictor-Corrector Method of order 2.
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