Physics 105a, Ken Intriligator lecture 19, Dec 7, 2017

e Several physical situations that involve essentially the same mathematics: (i) Laplace
equation, (ii) heat equation, (iii) wave equation, (iv) Schrodinger equation (for a free
particle in a confining potential box). In all of them we solve the following boundary value
problem in space: find the eigenstates and eigenvalues of the Laplacian in the appropriate
geometry, and write the solution as a superposition of them, with coefficients determined
by the boundary conditions on the geometry’s boundary.

For the wave equation (87 — ¢? V?2)y) = 0. For the heat equation (9; — x V)T = 0.
For the Schrodinger equation (ih0; + % V2 — V) = 0. For all of them the first step is to

solve for the eigenfunctions and eigenvalues of the Laplacian:

We can regard the Laplace equation as a special case, with A = 0, of this more general
equation. The minus sign is because the physical boundary conditions and behavior favor
such solutions, with A > 0, which are oscillating, compared with the exponential solutions.
In 1d, we could either solve ¥ = +x21 or ¢ = —k?1), and the former has exponential
solutions whereas the latter has oscillating, and we’re aiming for oscillating.

The 7 labels the solutions. E.g. for ¢! = —k24, with D boundary conditions on
the two ends we get v, = sin(nmz/L) and k, = —n?7%/L?. In d dimensions the similar
equation has d labels, so 77 denotes 3 labels in 3d. For example, in a 3d cube, with sides

of length a, b, and ¢, and D boundary conditions on each edge, we have
Yy mo.ns (T) = sin(nyma/a) sin(nemy/b) sin(ngmz/c), i = —12((n1/a)*+(no /b)*+(ns/c)?).

The ¢7(z) form a complete basis for functions, so now one considers e.g.
Y(E) =) Aata(d),
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where the Ay are determined by the initial conditions and/or the boundary conditions on

the boundary of the region. For the wave equation and heat equation one obtains

Y(t, &) =Y (A coswat + Bysin(wat))s(L), T = A,y e ly().
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where wz = eV ;.



e E.g. heat equation on a 2d rectangle with S = 0. Then V?T,,(z,y) = 0 requires
solving the Laplace equation with appropriate BCs. The solution for T(az, y,t) is obtained
by separation of variables. For example, with Dirichlet BCs at the ends get

T= 3" 5 Ay e 0/ P in (e ) sin(mry /b)

n>0m>0

where A, ,,, is obtained from the initial conditions as
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a b
Apm = = dm/ dysin(nmx/a) sin(nmy/b)(To(x,y) — Teq(x, y))-
ao Jo 0

e In cylindrical coordinates (p, ¢, z) and spherical coordinates (r, 6, ¢) we have

1 1 1 1
V20 = 0, (p0p0) + 0 + 0 =~ ORr) — L,

where, to save space (and because it is related to angular momentum) I have defined
L2 = L 5 (sin 091)) + ! 21
— = — i —s .
sinf" " ¢ sin29 ¢
Consider first the ¢ derivatives, we have
_O20(0) = —m’D(0),  B(g) = ™.
For cylindrical coordinates separation of variables gives
D2(z) = —k2Z(2),

where we will either take k, real or k, imaginary depending on the setup. For example,
consider V2¢ = 0. Then, taking ¢ = R(p)®(¢)Z(z) we see that the 8; term is negative
so to get V2¢ = 0 we need some positive contributions, i.e. we need exponential behavior
in either the 2z or the p direction. Which one is determined by the BCs, either we’ll need
oscillating solutions in z or oscillating in p, and then the other must be exponential.
First recall 2d from last time: the solutions are ¢ = Ag + Bolnr + Zm;éo(Amr'm' +
B,,r~Ime™?  E.g. suppose that there is a cylinder of radius a and the potential at r = a
is Vo (0). The solution for r < a has B,, = 0 and the solution for » > a has A,, = 0. The
solution on the boundary has e.g. A,al™ = §d0V,(0)e="™? /27, i.e. the familiar Fourier

transform expressions.



For 3d cylindrical, we have ¢(r,0,z) = R(r)O(0)Z(z) with Z"” = k?Z with, taking
u = kr the equation for R(u) is the Bessel equation: R’ +u 'R’ + (1 -m?u=2)R = 0. E.g.
¢(r,0,2 = 0) =0, ¢(r,0,z = L) = Vo(r,0) and é(a,6,2) = 0 has solution O(9) = e™?
and Z(z) = sinh(kpn2) and Ry, (1) = Adm(kmnr) + BNy, (kmynr) where B = 0 for the

solution be be finite at 7 = 0 and ki = Jimn/a and j,, = BesseJ Zero[m,n|.

o(r, 0, 2) Z ZAm ne””‘i’J (kn,mr) sinh(ky, m2).

m=—oo n=1
where we get A,, ,, by inverting the requirement that ¢(r, 6, L) = Vi(r, ). This is done by

using orthogonality properties of the Bessel functions:
a
/ I (Tn, 7/ @) T (T 7 /@) dr %aanH(:L’n,m)zémMu
0

e Spherical: take ¥, ¢ (7,0, ) = Ry o(r)Ye.m(0, @), where the Yy ., are eigenvalues of
L2 defined above:
_E21/£,m - —Z(ﬁ + 1)va,m(97 ¢>7

with £ = 0,1,2.... This might look familiar from QM, and you will see a lot more
of it in the upper division QM class. The Y, form a complete basis for functions
of # and ¢ with the usual periodicity. Expanding functions in terms of them is con-
ceptually similar to a Fourier transform, but in both 6 and ¢. They are given by
Yom = /2 Eg;Z%EPZm(Cos 0)ei™? where P/"(cos®) the associated Legendre functions.
Mathematica: P;"(x) = LegendreP|[l, m, x].

Separation of variables then gives

((l+1)R
VW= i v= R, Ry - EDE - g
For the Laplace equation, A = 0, the solutions of the radial equation are Ry,,(r) =

A&mr_e_l + Bg,mrg. Example: find the potential outside of a sphere of radius
a with V(a,0,¢) = Vo(2). Then ¢ = Ze,m Ap =YY, where Ay o=t =
J Yy, ()Vo(Q). E.g. for V5(Q) = VoH(7/2 — 0) get Agmzo = 0, and can do needed
integral via Mathematica.

For the 3d wave equation, there is a triple sum, e.g. n, ¢, m, where ¢, m are the usual
Yy.m labels, and n comes from the radial solution. Solutions of the Schrodinger equation
in QM have the same labels, for the same reason, e.g. the solutions of the Hydrogen atom

have ¢, m giving the angular momentum eigenvalues.
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e Disk drum example: ¥(a,d,t) = 0 with (r,0,0) = zo(r,0) and 9u)(r,0,0) =
vo(r,0). Separate variables as ¢ = f(t)R(r)e"™? and then 97f = —w? [ where wp
are found from r~'9,(rd,R) — r—*m?R = —w?, , R/c?, which is Bessel’s equation, with
Ry n(1) = Adp (Wi n1/¢) + BY (Wi n1/c), with B = 0 to have non-singular behavior at
r =0 (or A =0 for non-singular at  — c0). The n index labels the locations of the zeros
of the Bessel’s equations solutions, Jy,(jm,n) = 0.

Traveling wave solutions, e.g. Amvnei(me_“’m’”t) Im (Jmnr/a).

e Oscillations of the surface of a sphere: (97 — ¢? V?)i) = 0 in spherical coordinates,

taking r = R constant:

oo Y4

»(t, Q) = Z Z (Ag,m coswet + B, sinwet) Yy 1, ()
=0 m=—/¢

with we = e\/4({ +1)/R.

e Wave equation in spherical coordinates: get

o L
W = Z Z Z (A €0S Wemnt + B SiNWemnt) Ren (7)Y m (6, ).
n (=0 m=—¢

where R” +2r 'R’ + (k* — ({ + 1)r=2)R = 0 is related to the spherical Bessel equation
and k = w/c. The solutions are Ry = js(kr) + ne(kr), where j, is the solution that
works for » — 0. The integer n is determined by some boundary conditions in r, e.g.
for Dirichlet boundary conditions it labels the zeros of j,. E.g. jo(x) = sinx/z, ji(z) =
sinz/z? — cosx/x, ng = — cosx/x, etc.

e Heat or wave equation in cylindrical coordinates: V21, m x = —Anm kUn.m.k With
e.g. Ynmi = Jm(Gmnr/a)e™®sin(krz/L) and Ay m k = jnm/a+ (km/L)2.



