
Physics 105a, Ken Intriligator lecture 18, Dec 5, 2017

• Continue from last time: ∇2φ = −ρ, Or the wave equation in more space dimen-

sions, ∇2ψ − 1
c2
∂2t ψ = 0. Or the heat equation in more space dimensions, ∂tT = χ∇2T .

Solutions of the Laplace equation with N or D boundary conditions are unique.

2d rectangular: φ(x, y) = X(x)Y (y). GetX ′′ = −k21X and Y ′′ = −k22Y with k21+k
2
2 =

0, so the solutions are with X(x) = C1e
κx+C2e

−κx and Y (y) = C3e
iκy+C4e

−iκy, where κ

is real or imaginary depending on the BCs. The solutions are sin and cos in one directions,

and sinhs and coshs in the other. The direction with oscillating solutions leads to a single

n sum.

Example: suppose that BCs are φ(x, 0) = φ(y, 0) = φ(x, b) = 0 and φ(a, y) = φA(y).

Then Y (0) = Y (b) = 0 which requires that the oscillatory direction is y, and the exponen-

tial direction is x:

φ(x, y) =
∑

n

An sinh(nπx/b) sin(nπy/b), An sinh(nπa/b) =
2

b

∫ b

0

φA(y) sin(nπy/b)dy.

• Now consider 3d rectangular, φ(x, y, z) = X(x)Y (y)Z(z) get X ′′ = −k21X and

Y ′′ = −k22Y and Z ′′ = −k23Z with k21 + k22 + k23 = 0, so at least one has to be real and at

least one has to be imaginary, i.e. there is at least one oscillating direction and at least

one exponential direction. Again, solve for which is which based on the BCs.

Example: conducting wire with insulated sides: φ(x, y, 0) = 0, φ(x, y, L) = V0(x, y),

with ends at x = 0, x = a, y = 0, and y = b insulated. Ohms law gives ~j = σ ~E and

conducting means ~j⊥ = 0 at ends, so there are Neumann BCs at the boundaries in the x

and y directions. So writing kn,m ≡
√

n2π2/a2 +m2π2/b2

φ(x, y, z) = Cz +
∞
∑

n=0

∞
∑

m=0

An,m cos(nπx/a) cos(mπy/b) sinh(kn,mz),

and we solve for An,m and C by using the Fourier transform formulae for V0(x, y) at z = b:

An6=0,m 6=0 =
4

ab sinh kn,m

∫ ∫

dxdy cos(nπx/a) cos(nπy/b)V (x, y),

A0,m =
2

ab sinh k0,m
L

∫

dx

∫

dy cos(mπy/b)V (x, y), C =
1

abL

∫ ∫

dxdyV (x, y).

• Cylindrical coordinates: ∇2 = 1
r∂r(r∂r)+

1
r2 ∂

2
θ +∂

2
z . Consider first 2d case, setting

z = 0. φ(r, θ) = R(r)Θ(θ), then ∇2Φ/Φ = (rR)−1∂r(r∂rR) + (r2Θ)−1∂2θΘ. Solutions of

∇2φ = 0 are φ = A0 +B0 ln r +
∑

m 6=0(Amr
|m| +Bmr

−|m|)eimθ.
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ended here

E.g. suppose that there is a cylinder of radius a and the potential at r = a is Va(θ).

The solution for r < a has Bm = 0 and the solution for r > a has Am = 0. The solution on

the boundary has e.g. Ama
|m| =

∮

dθVa(θ)e
−imθ/2π, i.e. the familiar Fourier transform

expressions.

For 3d cylindrical, we have φ(r, θ, z) = R(r)Θ(θ)Z(z) with Z ′′ = k2Z with, taking

u ≡ kr the equation for R(u) is the Bessel equation: R′′ + u−1R′ + (1− ν2u−2)R = 0.

E.g. φ(r, θ, z = 0) = 0, φ(r, θ, z = L) = V0(r, θ) and φ(a, θ, z) = 0 has solution

Θ(θ) = eimθ and Z(z) = sinh(kn,mz) and Rm,n(r) = AJm(km,nr) + BNm(kn,mr) where

B = 0 for the solution be be finite at r = 0 and kn,m = BesseJZero[m,n]/a.

φ(r, θ, z) =

∞
∑

m=−∞

∞
∑

n=1

Am,ne
imφJm(kn,mr) sinh(kn,mz).

where we get An,m by inverting the requirement that φ(r, θ, L) = V0(r, θ). This is done by

using orthogonality properties of the Bessel functions:
∫ a

0

rJn(xn,mr/a)Jn(xn,m′r/a)dr = 1
2
a2Jn+1(xn,m)2δm,m′ .

• Spherical: ∇2Ψ = r−2∂r(r
2∂rΨ) + (r2 sin θ)−1∂θ(sin θ∂θΨ) + (r2 sin2 θ)−1∂2φΨ.

Solutions of ∇2Ψ = 0 are found by taking Ψ = R(r)Θ(θ)Φ(φ) find Φ = eimφ and

Θ(θ) = Pm
ℓ (cos θ) the associated Legendre functions. Finally, Rℓ,m(r) = Aℓ,mr

−ℓ−1 +

Bℓ,mr
ℓ. So Ψ =

∑∞
ℓ=0

∑ℓ
m=−ℓ(Aℓ,mr

−ℓ−1 + Bℓ,mr
ℓ)eimφPm

ℓ (cos θ). Use Yℓ,m =
√

2ℓ+1
4π

(ℓ−m)!
(ℓ+m)!P

m
ℓ (cos θ)eimφ as the orthonomal, complete basis of functions of (θ, φ). Aside

you will learn later, in QM, that: Yℓ,m(θ, φ) ∼ 〈θφ|ℓm〉 are the eigenstates of Lz and ~L2

in position space basis.

Mathematica: Pm
ℓ (x) = LegendreP [l,m, x].

Example: find the potential outside of a sphere of radius a with V (a, θ, φ) = V0(Ω).

Then φ =
∑

ℓ,mAℓ,mr
−ℓ+1Yℓ,m where Aℓ,ma

−ℓ+1 =
∫

dΩY ∗
ℓ,m(Ω)V0(Ω). E.g. for V0(Ω) =

V0H(π/2− θ) get Aℓ,m 6=0 = 0, and can do needed integral via Mathematica.

• Wave equation and heat equations in 2d and 3d: (∂2t − c2 ∇2)ψ = 0 and (∂t −

χ∇2)T̃ = 0.

• E.g. heat equation on a rectangle with S = 0. Then ∇2Teq(x, y) = 0 requires

solving the Laplace equation with appropriate BCs. The solution for T̃ (x, y, t) is obtained

by separation of variables. For example, with Dirichlet BCs at the ends get

T̃ =
∑

n>0

∑

m>0

An,me
−χπ2(n2/a2+m2/b2)t sin(nπx/a) sin(mπy/b)
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where An,m is obtained from the initial conditions as

An,m =
4

ab

∫ a

0

dx

∫ b

0

dy sin(nπx/a) sin(nπy/b)(T0(x, y)− Teq(x, y)).

• Disk drum: ψ(a, θ, t) = 0 with ψ(r, θ, 0) = z0(r, θ) and ∂tψ(r, θ, 0) = v0(r, θ).

Separate variables as ψ = f(t)R(r)eimθ and then ∂2t f = −ω2
m,nf where ωm,n are found

from r−1∂r(r∂rR) − r−2m2R = −ω2
m,nR/c

2, which is Bessel’s equation, with Rm,n(r) =

AJm(ωm,nr/c) + BYm(ωm,nr/c), with B = 0 to have non-singular behavior at r = 0 (or

A = 0 for non-singular at r → ∞). The n index labels the locations of the zeros of the

Bessel’s equations solutions, Jm(jm,n) = 0.

Traveling wave solutions, e.g. Am,ne
i(mθ−ωm,nt)Jm(jm,nr/a).

• Oscillations of the surface of a sphere: (∂2t − c2 ∇2)ψ = 0 in spherical coordinates,

taking r = R constant:

ψ(t,Ω) =
∞
∑

ℓ=0

ℓ
∑

m=−ℓ

(Aℓ,m cosωℓt+Bℓm sinωℓt)Yℓ,m(Ω)

with ωℓ = c
√

ℓ(ℓ+ 1)/R.

• Wave equation in spherical coordinates: get

ψ =
∑

n

∞
∑

ℓ=0

ℓ
∑

m=−ℓ

(Aℓm cosωℓmnt+Bℓm sinωℓmnt)Rℓn(r)Yℓ,m(θ, φ).

where R′′ + 2r−1R′ + (k2 − ℓ(ℓ + 1)r−2)R = 0 is related to the spherical Bessel equation

and k = ω/c. The solutions are Rℓ = jℓ(kr) + nℓ(kr), where jℓ is the solution that

works for r → 0. The integer n is determined by some boundary conditions in r, e.g.

for Dirichlet boundary conditions it labels the zeros of jℓ. E.g. j0(x) = sinx/x, j1(x) =

sinx/x2 − cosx/x, n0 = − cosx/x, etc.
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