Physics 105a, Ken Intriligator lecture 18, Dec 5, 2017

e Continue from last time: V2¢ = —p, Or the wave equation in more space dimen-
sions, V21 — c%@fzp = 0. Or the heat equation in more space dimensions, 9,7 = x V27
Solutions of the Laplace equation with N or D boundary conditions are unique.

2d rectangular: ¢(z,y) = X (2)Y (y). Get X" = —kIX and Y = —k3Y with k? +k3 =
0, so the solutions are with X (z) = C1e** +Cae "% and Y (y) = C3e"*¥ + Cye™ Y, where k
is real or imaginary depending on the BCs. The solutions are sin and cos in one directions,
and sinhs and coshs in the other. The direction with oscillating solutions leads to a single
n sum.

Example: suppose that BCs are ¢(z,0) = ¢(y,0) = ¢(x,b) = 0 and ¢(a,y) = ¢a(y).
Then Y (0) = Y (b) = 0 which requires that the oscillatory direction is y, and the exponen-

tial direction is x:
o(x,y) = Z A, sinh(nmz/b) sin(nmy/b), A, sinh(nma/b) = / b (y) sin(nmy/b)dy

e Now consider 3d rectangular, ¢(z,y,z) = X(2)Y(y)Z(z) get X" = —k3X and
Y" = —k2Y and Z" = —k2Z with k? + k3 + k2 = 0, so at least one has to be real and at
least one has to be imaginary, i.e. there is at least one oscillating direction and at least
one exponential direction. Again, solve for which is which based on the BCs.

Example: conducting wire with insulated sides: ¢(z,y,0) = 0, ¢(z,y, L) = Vo(x,y),
with ends at * = 0, x = a, y = 0, and y = b insulated. Ohms law gives ; = oE and
conducting means ; 1 = 0 at ends, so there are Neumann BCs at the boundaries in the =

and y directions. So writing ky, ,, = \/n?72/a? + m272 /b

o(x,y,2) =Cz+ Z Z Ay m cos(nma/a) cos(mmy/b) sinh(ky, m 2),

n=0m=0

and we solve for A,, ,,, and C by using the Fourier transform formulae for Vy(z,y) at z = b:

Ap20,m0 = m//dwdycos(mm/a) cos(nmy/b)V(x,y),
A —#L/d/d (my /B)V (2, y) //ddV
0m = bsinh kg, ) 0 ) STV Y), = WL zdyV(z,y).

e Cylindrical coordinates: V? = 10,(rd,) + -507 + 92. Consider first 2d case, setting
z=0. ¢(r,0) = R(r)©(0), then V2®/® = (rR)"10,(rd,R) + (r*©)~1970. Solutions of
V2p=0are p = Ay + Bylnr + Zm;éo(Amr'm‘ + B,r—Imhemd,
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ended here

E.g. suppose that there is a cylinder of radius a and the potential at r = a is V().
The solution for » < a has B,,, = 0 and the solution for » > a has A,,, = 0. The solution on
the boundary has e.g. A,,al™ = $dOV,(0)e~"0 /21 i.e. the familiar Fourier transform
expressions.

For 3d cylindrical, we have ¢(r,0,z) = R(r)O(0)Z(z) with Z" = k?Z with, taking
u = kr the equation for R(u) is the Bessel equation: R” +u 'R + (1 —v*u=2)R = 0.

Eg. o¢(r,0,z=0) =0, ¢(r,0,z = L) = Vy(r,0) and ¢(a,6,z) = 0 has solution
0() = €™ and Z(z) = sinh(ky, m2) and Ry, n(r) = Adp(kmnt) + BNy (ky.mr) where
B = 0 for the solution be be finite at » = 0 and k,, ,,, = BesseJZero|m,n]/a.

o(r,0,z) Z ZAm n€ ™ T ( (kp,m1) sinh(ky, m2).

m=—oo n=1
where we get A,, ,,, by inverting the requirement that ¢(r, 8, L) = V(r,6). This is done by

using orthogonality properties of the Bessel functions:
a
/ T In(Tn,mT/ @) In (T mr/a)dr %aQJnH(xn,m)Qém,m/.
0

e Spherical: V2W = r720,(r20,¥) + (r?sin6)~'0(sin 00,¥) + (r?sin’0) 105V
Solutions of V2W¥ = 0 are found by taking ¥ = R(r)O(0)®(¢) find & = e™? and
O(f) = PM(cosf) the associated Legendre functions. Finally, Ry, (r) = Agmr ! +
Bymrt. So U = Z;‘;Oan:_g(Ag,mr_e_l + Bymrt)e™? P (cos). Use Yy, =

2041 (d—m)!
4m  (L4+m)!

you will learn later, in QM, that: Y, ,,,(0,¢) ~ (8¢|¢m) are the eigenstates of L, and L2
in position space basis.

Mathematica: P;"(z) = LegendreP[l, m, x|.

Example: find the potential outside of a sphere of radius a with V(a, 8, ¢) = Vo(Q).
Then ¢ = Ze’m A=Y, where Ay a1 = fdQYZm(Q)VO(Q). E.g. for V5(Q) =

H(m/2 —0) get Agmxo =0, and can do needed integral via Mathematica.

e Wave equation and heat equations in 2d and 3d: (8? — > V?)y = 0 and (9; —
XVHT =

e E.g. heat equation on a rectangle with S = 0. Then V2T,,(z,y) = 0 requires

P} (cos 0)e"™? as the orthonomal, complete basis of functions of (0, ¢). Aside

solving the Laplace equation with appropriate BCs. The solution for T(az, Yy, t) is obtained
by separation of variables. For example, with Dirichlet BCs at the ends get

T=3" 3" A e ™ /@t i (e fa) sin(may /)

n>0m>0



where A,, ,,, is obtained from the initial conditions as

Ay = %/Oa dm/o dysin(nmx/a) sin(nmy/b)(To(x,y) — Teq(x, y))-

e Disk drum: (a,0,t) = 0 with ¥(r,0,0) = z(r,0) and 0;(r,0,0) = vo(r,0).

Separate variables as ¢ = f(t)R(r)e’™? and then 87 f = —w?, , f where wp, , are found
from 7719, (ro,R) — r~?m*R = —w?, ,R/c?, which is Bessel’s equation, with Ry, ,,(r) =

AJp (wmnr/c) + BY (W nr/c), with B = 0 to have non-singular behavior at » = 0 (or
A = 0 for non-singular at r — 00). The n index labels the locations of the zeros of the
Bessel’s equations solutions, Jy, (jm.n) = 0.

Traveling wave solutions, e.g. Amvnei(me_“’m’”t) Im (Jmnr/a).

e Oscillations of the surface of a sphere: (92 — ¢? V2)¢) = 0 in spherical coordinates,

taking r = R constant:

) y4

Y(t, Q) = Z Z (Ag,m coswet + B, sinwet) Yy, ()

=0 m=—4¢

with wy = e/£(¢ +1)/R.

e Wave equation in spherical coordinates: get

0 y4
¢ = Z Z Z (Afm COS W@mnt + B@m sin W@mnt)Rén(r)}/f,m<97 ¢)
n {=0 m=—{¢
where R 4+ 2r=1R' + (k? — £(£ + 1)r=2)R = 0 is related to the spherical Bessel equation
and k = w/c. The solutions are Ry = js(kr) + ne(kr), where j, is the solution that
works for » — 0. The integer n is determined by some boundary conditions in r, e.g.
for Dirichlet boundary conditions it labels the zeros of j,. E.g. jo(x) = sinx/z, ji(z) =

sinz/z? — cosx/x, ng = — cosx/z, etc.



