Physics 105a, Ken Intriligator lecture 17, Nov 30, 2017

e Continue from last time: heat flow equation in 1 + 1d: C(z)0;T = 0,(k0,T) + S,
where C' is the specific heat, x is the thermal conductivity, and S is the source of heat
energy per unit volume. For x and C constant, this becomes ;T = x9?>T + S/C, where
x = £/C is the thermal diffusivity (units of m?/s e.g. x ~ 10~7 for water and y ~ 10~*
for copper. Initial condition in time = T'(x,0) = Ty(z). Initial condition in space e.g. D
boundary conditions: Tj(t) and T5(t) at the two ends (or N conditions specifying T, at
either or both ends.

Separation of variables works if there is an equilibrium solution T¢,(z), that is time
independent. Necessary to have t independent boundary conditions and source. The
solution then takes the form T'(x,t) = Toq(x) +T(z,t) (where T = AT in the book). Then
xTe, () = S/C is integrated to find T4 (z) and o,T = X@gf. As usual, separate variables,
taking T = f(t)¥(z) to get dyIn f = X and X021 = \p, with X a constant. Typically the
setup gives A < 0 to avoid exponentially growing solutions in time and space, so get e.g.

(in the DD boundary condition case; for NN get instead cos(nmz/L) solutions).

T(x,t) =Teq(x) + Z ApeXi(nm/L)? sin(nma/L).

The A, are determined by the initial condition on T'(z,t = 0) = Ty(x) via A, =
%fOL(TO(a:) — Teq(x)) sin(nma/L)dx. Higher n modes are damped out faster; show ani-
mation from ch3.nb. The heat flux is —xd,T is non-zero at the ends, which is why the
energy inside decreases. If the BCs at both ends are instead Neumann, then we instead
have T'(z,t) = 7, A,e=Xxtn’7* /L% cos(nma/L). There is then no heat flux at the ends.

e Now consider Laplace and Poisson’s equations, V2¢ = —p, Or the wave equation in
more space dimensions, V2 — Ciz@fw = 0. Or the heat equation in more space dimensions,
;T = x V2T. In all of them we replace the 1d 82 with V2. The reason for this is rotational
symmetry. Separation of variables is then to take ¢» = f(¢)X ()Y (y)Z(z) if the setup is
rectangular. Or ¢ = f(t)R(r)O(0)P(¢) if the setup is spherical. Or ¢ = f(t)P(p)P(¢p)Z(z)
if it’s cylindrical. If it’s none of these, there are some other separable coordinate systems.
If it’s none of those, it might be better to just give it to a computer.

e Solutions of the Laplace equation with N or D boundary conditions are unique: if
® = ¢1 — ¢2 is the difference then 0 = [, ®V?®dV = [, ®VP-di— [, V®- VP, and
then the BCs ensure that the |, 5y term = 0, and positivity V® - V& implies that this

integral can only vanish if ® is a constant, which must be zero to satisfy the BCs.
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e E.g. 2d rectangular: ¢(x,y) = X (2)Y (y) with X (z) = C1€"* + Cae™* and Y (y) =
Cze™ + Cye™ ™Y, where & is real or imaginary depending on the BCs. The solutions are
sins and coss in one directions, and sinhs and coshs in the other. Example: suppose that
BCs are ¢(z,0) = ¢(y,0) = ¢(x,b) = 0 and ¢(a,y) = ¢a(y). Then Y (0) = Y (b) = 0 which

requires that the oscillatory direction is y, and the exponential direction is z:

b
o(x,y) = Z A, sinh(nmx/b) sin(nmy/b), A, sinh(nma/b) = %/0 o a(y) sin(nmy/b)dy.



