
Physics 105a, Ken Intriligator lecture 17, Nov 30, 2017

• Continue from last time: heat flow equation in 1 + 1d: C(x)∂tT = ∂x(κ∂xT ) + S,

where C is the specific heat, κ is the thermal conductivity, and S is the source of heat

energy per unit volume. For κ and C constant, this becomes ∂tT = χ∂2xT + S/C, where

χ = κ/C is the thermal diffusivity (units of m2/s e.g. χ ∼ 10−7 for water and χ ∼ 10−4

for copper. Initial condition in time = T (x, 0) = T0(x). Initial condition in space e.g. D

boundary conditions: T1(t) and T2(t) at the two ends (or N conditions specifying Tx at

either or both ends.

Separation of variables works if there is an equilibrium solution Teq(x), that is time

independent. Necessary to have t independent boundary conditions and source. The

solution then takes the form T (x, t) = Teq(x)+ T̃ (x, t) (where T̃ ≡ ∆T in the book). Then

χT ′′

eq(x) = S/C is integrated to find Teq(x) and ∂tT̃ = χ∂2xT̃ . As usual, separate variables,

taking T̃ = f(t)ψ(x) to get ∂t ln f = λ and χ∂2xψ = λψ, with λ a constant. Typically the

setup gives λ < 0 to avoid exponentially growing solutions in time and space, so get e.g.

(in the DD boundary condition case; for NN get instead cos(nπx/L) solutions).

T (x, t) = Teq(x) +
∑
n

Ane
−χt(nπ/L)2 sin(nπx/L).

The An are determined by the initial condition on T (x, t = 0) = T0(x) via An =
2
L

∫ L

0
(T0(x) − Teq(x)) sin(nπx/L)dx. Higher n modes are damped out faster; show ani-

mation from ch3.nb. The heat flux is −κ∂xT is non-zero at the ends, which is why the

energy inside decreases. If the BCs at both ends are instead Neumann, then we instead

have T (x, t) =
∑

∞

n=0Ane
−χtn2π2/L2

cos(nπx/L). There is then no heat flux at the ends.

• Now consider Laplace and Poisson’s equations, ∇
2φ = −ρ, Or the wave equation in

more space dimensions, ∇2ψ− 1
c2 ∂

2
t ψ = 0. Or the heat equation in more space dimensions,

∂tT = χ∇
2T . In all of them we replace the 1d ∂2x with ∇

2. The reason for this is rotational

symmetry. Separation of variables is then to take ψ = f(t)X(x)Y (y)Z(z) if the setup is

rectangular. Or ψ = f(t)R(r)Θ(θ)Φ(φ) if the setup is spherical. Or ψ = f(t)P (ρ)Φ(φ)Z(z)

if it’s cylindrical. If it’s none of these, there are some other separable coordinate systems.

If it’s none of those, it might be better to just give it to a computer.

• Solutions of the Laplace equation with N or D boundary conditions are unique: if

Φ = φ1 − φ2 is the difference then 0 =
∫
V
Φ∇

2ΦdV =
∫
∂V

Φ∇Φ · d~a−
∫
V

∇Φ · ∇Φ, and

then the BCs ensure that the
∫
∂V

term = 0, and positivity ∇Φ · ∇Φ implies that this

integral can only vanish if Φ is a constant, which must be zero to satisfy the BCs.
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• E.g. 2d rectangular: φ(x, y) = X(x)Y (y) with X(x) = C1e
κx +C2e

−κx and Y (y) =

C3e
iκy + C4e

−iκy, where κ is real or imaginary depending on the BCs. The solutions are

sins and coss in one directions, and sinhs and coshs in the other. Example: suppose that

BCs are φ(x, 0) = φ(y, 0) = φ(x, b) = 0 and φ(a, y) = φA(y). Then Y (0) = Y (b) = 0 which

requires that the oscillatory direction is y, and the exponential direction is x:

φ(x, y) =
∑
n

An sinh(nπx/b) sin(nπy/b), An sinh(nπa/b) =
2

b

∫ b

0

φA(y) sin(nπy/b)dy.
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