
Physics 105a, Ken Intriligator lecture 16, Nov 28, 2017

• Continue with chapter 3. Introducing partial differential equations, and their solu-

tion by separation of variables. First example, the string wave equation:

(
1

c2
∂2

∂t2
−

∂2

∂x2
)y(x, t) = 0,

where c =
√

τ/µ is the wave velocity on the string and y(x, t) is the string’s displacement

from equilibrium. Aside: This equation comes from Fy = may for the bit of string between

x and x+ dx: write it as dFy = dmay where the d is because it is a small element e.g. its

mass is dm = µdx and dFy = Fy(x+ dx)− Fy(x) = ∂xFydx and Fy(x) = T∂y/∂x. Aside:

the string wave equation can be obtained from the Euler Lagrange equations with

S =

∫

dt

∫

dx( 1
2
µẏ2 − 1

2
Ty′2).

where ḟ ≡ ∂tf and f ′
≡ ∂xf .

The string wave equation is can be called the wave equation in 1+1 dimensions. There

is a similar equation in 2+1 dimensions, describing for example waves on a 2d surface (like

a drum head), or in 3+1 dimensions

(
1

c2
∂2

∂t2
−∇

2)ψ(x, t) = 0

where ψ could be the longitudinal displacement of air in a sound wave, or it could be a

transverse component of ~E or ~B in a light wave.

• Note that the wave equations are linear, so they can be solved by superposition.

One class of solutions are left and right moving traveling waves

y(x, t) = f(x+ ct) + g(x− ct)

which satisfies the wave equation for any functions f and g. For fixed ends (Dirichlet

boundary conditions), a traveling wave that hits the end gets reflected back and satisfies

y(x = xend, t) = 0 by having the reflected wave get flipped upside down. (You probably

saw essentially this same thing in a class on waves in the context of the phase shift when

light reflects off of a medium with larger index of refraction.)

• Illustrating separation of variables for the string wave equation. Take y = f(t)ψ(x)

and plug into the equation. Put all of the t-dependent terms on one side of the equation,

and all of the x-dependent terms on the other. The equation has to be satisfied for all (t, x).
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This can only work if both sides are a constant. The upshot is two ordinary differential

equations. For the case of the string, both of these equations are simply that of a SHO:

d2f

dt2
= −ω2f,

d2ψ(x)

dx2
= −k2ψ(x), ω = ck.

Suppose that there are Dirichlet boundary conditions with ψ(x = 0) = ψ(x = L) = 0.

Then the solutions for ψ are labeled by integers (there is no solution unless k = kn takes

special values):

ψn(x) = Cn sin(nπx/L), i.e. kn = 2π/λn = nπ/L n = 1, 2, 3, . . .

where n = 1 is the fundamental mode, n = 2 is the first excited mode (which has one

node in the middle, n = 3 is the second excited mode, etc., λn = 2L/n, and Cn are

constants. These are the same as the solutions for the wave function of a particle in a 1d

box in quantum mechanics, where there pn = h̄kn (because ψ satisfies the same differential

equation and the same boundary conditions). Since k = kn, the time-dependent equation

has frequency ω = ωn = ckn. We can get a general solution by superposition

y(x, t) =
∞
∑

n=1

(An cos(cnπt/L) +Bn sin(cnπt/L)) sin(nπx/L).

The An and Bn are constants of integration, that can be determined from the initial

conditions. If we are told that y(x, 0) = y0(x) and ẏ(x, 0) = v0(x), with y0(x) and v0(x)

some given functions, then we can related An and Bn to the Fourier coefficients in the

Fourier series expansion of these functions:

An =
2

L

∫ L

0

y0(x) sin(nπx/L)dx, Bn =
2

Lωn

∫ L

0

v0(x) sin(nπx/L)dx.

• Dirichlet boundary conditions: y(0, t) = y0, y(L, t) = yL, fixed. Neumann boundary

conditions: instead specify the slope at the ends, yx(0, t) or yx(L, t). Can have NN,

ND, DN, DD boundary conditions (i.e. either one, at either end), depending on the

physical setup. For D conditions at x = 0 and N at x = L, get ψn = Cn sin(knx) with

knL = (n + 1
2)π. For N conditions at x = 0, use instead ψn(x) = Cn cos(knx) and then

determine kn by conditions at x = L.

• Example: take y0(x) to be a straight line, of slope a for 0 < x < L/2 and slope

−a for L/2 < x < L, with v0(x) = 0. So Bn = 0 and An = 4aL sin(nπ/2)/n2π2. Show
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animation from Dubin cell 3.3 for the first M = 30 terms. Looks strange, but it’s correct

for undamped oscillations.

• Example: Gaussian y0(x) = e−50(x−L/2)2/L2

, v0(x) = 0. Again, animations from

Dubin.

• Heat flow equation in 1+1d: C(x)∂tT = ∂x(κ∂xT )+S, where C is the specific heat,

κ is the thermal conductivity, and S is the source of heat energy per unit volume. For κ

and C constant, this becomes ∂tT = χ∂2xT+S/C, where χ = κ/C is the thermal diffusivity

(units of m2/s e.g. χ ∼ 10−7 for water and χ ∼ 10−4 for copper. Initial condition in time

= T (x, 0) = T0(x). Initial condition in space e.g. D boundary conditions: T1(t) and T2(t)

at the two ends (or N conditions specifying Tx at either or both ends.

Separation of variables works if there is an equilibrium solution Teq(x), that is time

independent. Necessary to have t independent boundary conditions and source. The

solution then takes the form T (x, t) = Teq(x)+ T̃ (x, t) (where T̃ ≡ ∆T in the book). Then

∂tT̃ = χ∂2xT̃ . As usual, separate variables, taking T̃ = f(t)ψ(x) to get ∂t ln f = λ and

χ∂2xψ = λψ, with λ a constant. Typically the setup gives λ < 0 to avoid exponentially

growing solutions in time and space, so get e.g. (in the DD boundary condition case; for

NN get instead cos(nπx/L) solutions).

T (x, t) = Teq(x, t) +
∑

n

Ane
−χt(nπ/L)2 sin(nπx/L).

• Now consider Laplace and Poisson’s equations, ∇
2φ = −ρ, Or the wave equation in

more space dimensions, ∇2ψ− 1
c2 ∂

2
t ψ = 0. Or the heat equation in more space dimensions,

∂tT = χ∇
2T . In all of them we replace the 1d ∂2x with ∇

2. The reason for this is rotational

symmetry. Separation of variables is then to take ψ = f(t)X(x)Y (y)Z(z) if the setup is

rectangular. Or ψ = f(t)R(r)Θ(θ)Φ(φ) if the setup is spherical. Or ψ = f(t)P (ρ)Φ(φ)Z(z)

if it’s cylindrical. If it’s none of these, there are some other separable coordinate systems.

If it’s none of those, it might be better to just give it to a computer.

• Solutions of the Laplace equation with N or D boundary conditions are unique: if

Φ = φ1 − φ2 is the difference then 0 =
∫

V
Φ∇

2ΦdV =
∫

∂V
Φ∇Φ · d~a−

∫

V
∇Φ · ∇Φ, and

then the BCs ensure that the
∫

∂V
term = 0, and positivity ∇Φ · ∇Φ implies that this

integral can only vanish if Φ is a constant, which must be zero to satisfy the BCs.

• E.g. 2d rectangular: φ(x, y) = X(x)Y (y) with X(x) = C1e
κx +C2e

−κx and Y (y) =

C3e
iκy + C4e

−iκy, where κ is real or imaginary depending on the BCs.
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• 2d cylindrical: φ(r, θ) = R(r)Θ(θ), then ∇
2Φ/Φ = (rR)−1∂r(r∂rR) + (r2Θ)−1∂2θΘ.

Solutions of ∇
2φ = 0 are φ = A0 +B0 ln r +

∑

m 6=0(Amr
|m| +Bmr

−|m|)eimθ.

• Spherical: ∇
2Ψ = r−2∂r(r

2∂rΨ) + (r2 sin θ)−1∂θ(sin θ∂θΨ) + (r2 sin2 θ)−1∂2φΨ.

Solutions of ∇
2Ψ = 0 are found by taking Ψ = R(r)Θ(θ)Φ(φ) find Φ = eimφ and

Θ(θ) = Pm
ℓ (cos θ) the associated Legendre functions. Finally, Rℓ,m(r) = Aℓ,mr

−ℓ−1 +

Bℓ,mr
ℓ. So Ψ =

∑∞
ℓ=0

∑ℓ
m=−ℓ(Aℓ,mr

−ℓ−1 + Bℓ,mr
ℓ)eimφPm

ℓ (cos θ). Use Yℓ,m =
√

2ℓ+1
4π

(ℓ−m)!
(ℓ+m)!

Pm
ℓ (cos θ)eimφ as the orthonomal, complete basis of functions of (θ, φ).
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