
Physics 105a, Ken Intriligator lecture 15, Nov 21, 2017

• Start Chapter 3. Introducing partial differential equations, and their solution by

separation of variables. First example, the string wave equation:

(
1

c2
∂2

∂t2
−

∂2

∂x2
)y(x, t) = 0,

where c =
√

τ/µ is the wave velocity on the string and y(x, t) is the string’s displacement

from equilibrium. Aside: This equation comes from Fy = may for the bit of string between

x and x+ dx: write it as dFy = dmay where the d is because it is a small element e.g. its

mass is dm = µdx and dFy = Fy(x+ dx)− Fy(x) = ∂xFydx and Fy(x) = T∂y/∂x. Aside:

the string wave equation can be obtained from the Euler Lagrange equations with

S =

∫

dt

∫

dx( 12µẏ
2
−

1
2Ty

′2).

The string wave equation is can be called the wave equation in 1+1 dimensions. There

is a similar equation in 2+1 dimensions, describing for example waves on a 2d surface (like

a drum head), or in 3+1 dimensions

(
1

c2
∂2

∂t2
−∇

2)ψ(x, t) = 0

where ψ could be the longitudinal displacement of air in a sound wave, or it could be a

transverse component of ~E or ~B in a light wave.

• Note that the wave equations are linear, so they can be solved by superposition.

One class of solutions are left and right moving traveling waves

y(x, t) = f(x+ ct) + g(x− ct)

which satisfies the wave equation for any functions f and g. For fixed ends (Dirichlet

boundary conditions), a traveling wave that hits the end gets reflected back and satisfies

y(x = xend, t) = 0 by having the reflected wave get flipped upside down. (You probably

saw essentially this same thing in a class on waves in the context of the phase shift when

light reflects off of a medium with larger index of refraction.)

• Illustrating separation of variables for the string wave equation. Take y = f(t)ψ(x)

and plug into the equation. Put all of the t-dependent terms on one side of the equation,

and all of the x-dependent terms on the other. The equation has to be satisfied for all (t, x).
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This can only work if both sides are a constant. The upshot is two ordinary differential

equations. For the case of the string, both of these equations are simply that of a SHO:

d2f

dt2
= −ω2f,

d2ψ(x)

dx2
= −k2ψ(x), ω = ck.

Suppose that there are Dirichlet boundary conditions with ψ(x = 0) = ψ(x = L) = 0.

Then the solutions for ψ are labeled by integers (there is no solution unless k = kn takes

special values):

ψn(x) = Cn sin(nπx/L), i.e. kn = 2π/λn = nπ/L n = 1, 2, 3, . . .

where n = 1 is the fundamental mode, n = 2 is the first excited mode (which has one

node in the middle, n = 3 is the second excited mode, etc., λn = 2L/n, and Cn are

constants. These are the same as the solutions for the wave function of a particle in a 1d

box in quantum mechanics, where there pn = h̄kn (because ψ satisfies the same differential

equation and the same boundary conditions). Since k = kn, the time-dependent equation

has frequency ω = ωn = ckn. We can get a general solution by superposition

y(x, t) =
∞
∑

n=1

(An cos(cnπt/L) +Bn sin(cnπt/L)) sin(nπx/L).

The An and Bn are constants of integration, that can be determined from the initial

conditions. If we are told that y(x, 0) = y0(x) and ẏ(x, 0) = v0(x), with y0(x) and v0(x)

some given functions, then we can related An and Bn to the Fourier coefficients in the

Fourier series expansion of these functions:

An =
2

L

∫ L

0

y0(x) sin(nπx/L)dx, Bn =
2

Lωn

∫ L

0

v0(x) sin(nπx/L)dx.

• Example: take y0(x) to be a straight line, of slope a for 0 < x < L/2 and slope

−a for L/2 < x < L, with v0(x) = 0. So Bn = 0 and An = 4aL sin(nπ/2)/n2π2. Show

animation from Dubin cell 3.3 for the first M = 30 terms. Looks strange, but it’s correct

for undamped oscillations.

• Example: Gaussian y0(x) = e−50(x−L/2)2/L2

, v0(x) = 0. Again, animations from

Dubin.

• Dirichlet boundary conditions: y(0, t) = y0, y(L, t) = yL, fixed. Neumann boundary

conditions: instead specify the slope at the ends, yx(0, t) or yx(L, t). Can have NN, ND,
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DN, DD boundary conditions (i.e. either one, at either end), depending on the physical

setup.

• Heat flow equation in 1+1d: C(x)∂tT = ∂x(κ∂xT )+S, where C is the specific heat,

κ is the thermal conductivity, and S is the source of heat energy per unit volume. For κ

and C constant, this becomes ∂tT = χ∂2xT+S/C, where χ = κ/C is the thermal diffusivity

(units of m2/s e.g. χ ∼ 10−7 for water and χ ∼ 10−4 for copper. Initial condition in time

= T (x, 0) = T0(x). Initial condition in space e.g. D boundary conditions: T1(t) and T2(t)

at the two ends (or N conditions specifying Tx at either or both ends.

Separation of variables works if there is an equilibrium solution Teq(x), that is time

independent. Necessary to have t independent boundary conditions and source. The

solution then takes the form T (x, t) = Teq(x)+ T̃ (x, t) (where T̃ ≡ ∆T in the book). Then

∂tT̃ = χ∂2xT̃ . As usual, separate variables, taking T̃ = f(t)ψ(x) to get ∂t ln f = λ and

χ∂2xψ = λψ, with λ a constant. Typically the setup gives λ < 0 to avoid exponentially

growing solutions in time and space, so get e.g. (in the DD boundary condition case; for

NN get instead cos(nπx/L) solutions).

T (x, t) = Teq(x, t) +
∑

n

Ane
−χt(nπ/L)2 sin(nπx/L).

• Now consider Laplace and Poisson’s equations, ∇
2φ = −ρ, Or the wave equation in

more space dimensions, ∇2ψ− 1
c2 ∂

2
t ψ = 0. Or the heat equation in more space dimensions,

∂tT = χ∇
2T . In all of them we replace the 1d ∂2x with ∇

2. The reason for this is rotational

symmetry. Separation of variables is then to take ψ = f(t)X(x)Y (y)Z(z) if the setup is

rectangular. Or ψ = f(t)R(r)Θ(θ)Φ(φ) if the setup is spherical. Or ψ = f(t)P (ρ)Φ(φ)Z(z)

if it’s cylindrical. If it’s none of these, there are some other separable coordinate systems.

If it’s none of those, it might be better to just give it to a computer.
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