Physics 105a, Ken Intriligator lecture 15, Nov 21, 2017
e Start Chapter 3. Introducing partial differential equations, and their solution by
separation of variables. First example, the string wave equation:
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where ¢ = \/m is the wave velocity on the string and y(z,t) is the string’s displacement
from equilibrium. Aside: This equation comes from F,, = ma, for the bit of string between
x and x + dx: write it as dF,, = dma, where the d is because it is a small element e.g. its
mass is dm = pdx and dF, = F(x + dz) — Fy(x) = 0xFydx and F,(x) = T0y/0x. Aside:

the string wave equation can be obtained from the Euler Lagrange equations with

S:/dt/dm(%uy'2 — 1Ty").

The string wave equation is can be called the wave equation in 141 dimensions. There
is a similar equation in 2+1 dimensions, describing for example waves on a 2d surface (like

a drum head), or in 341 dimensions
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where 1 could be the longitudinal displacement of air in a sound wave, or it could be a
transverse component of Eor Bina light wave.
e Note that the wave equations are linear, so they can be solved by superposition.

One class of solutions are left and right moving traveling waves
y(z,t) = f(z+ct) + g(z — ct)

which satisfies the wave equation for any functions f and g. For fixed ends (Dirichlet
boundary conditions), a traveling wave that hits the end gets reflected back and satisfies
yY(xr = Zend,t) = 0 by having the reflected wave get flipped upside down. (You probably
saw essentially this same thing in a class on waves in the context of the phase shift when
light reflects off of a medium with larger index of refraction.)

e Tllustrating separation of variables for the string wave equation. Take y = f(¢)y(x)
and plug into the equation. Put all of the t-dependent terms on one side of the equation,

and all of the z-dependent terms on the other. The equation has to be satisfied for all (¢, ).
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This can only work if both sides are a constant. The upshot is two ordinary differential

equations. For the case of the string, both of these equations are simply that of a SHO:
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= —w?f, = —k%)(x), w = ck.

Suppose that there are Dirichlet boundary conditions with ¢ (z = 0) = ¢(z = L) = 0.
Then the solutions for v are labeled by integers (there is no solution unless k = k,, takes

special values):
Yn(x) = Cpsin(nrzx /L), ie. k,=2mw/\, =nn/L n=123,...

where n = 1 is the fundamental mode, n = 2 is the first excited mode (which has one
node in the middle, n = 3 is the second excited mode, etc., A\, = 2L/n, and C,, are
constants. These are the same as the solutions for the wave function of a particle in a 1d
box in quantum mechanics, where there p,, = hk,, (because 1) satisfies the same differential
equation and the same boundary conditions). Since k = k,,, the time-dependent equation

has frequency w = w,, = ck,,. We can get a general solution by superposition
Z A, cos(enmt/L) + B, sin(ennwt/L)) sin(nmx/L).

The A, and B, are constants of integration, that can be determined from the initial
conditions. If we are told that y(z,0) = yo(z) and ¢(z,0) = vo(z), with yo(z) and vo(x)
some given functions, then we can related A, and B, to the Fourier coefficients in the

Fourier series expansion of these functions:

2 [F 2 [F
A, = —/ yo(x) sin(nwz/L)dz, B, = / vo(x) sin(nmz/L)dz
L 0 Lwn 0

e Example: take yo(x) to be a straight line, of slope a for 0 < z < L/2 and slope
—a for L/2 < o < L, with vg(x) = 0. So B, = 0 and A,, = 4aLsin(nn/2)/n?*r%. Show
animation from Dubin cell 3.3 for the first M = 30 terms. Looks strange, but it’s correct
for undamped oscillations.

e Example: Gaussian yo(z) = G_SO(I_L/2)2/L2, vo(x) = 0. Again, animations from
Dubin.

e Dirichlet boundary conditions: y(0,t) = yo, y(L,t) = yr, fixed. Neumann boundary

conditions: instead specify the slope at the ends, y.(0,t) or y,(L,t). Can have NN, ND,
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DN, DD boundary conditions (i.e. either one, at either end), depending on the physical
setup.

e Heat flow equation in 1+ 1d: C(x)0;T = 0,(k0,T)+ S, where C' is the specific heat,
k is the thermal conductivity, and S is the source of heat energy per unit volume. For k
and C constant, this becomes 0,7 = x92T+S/C, where x = k/C is the thermal diffusivity
(units of m?/s e.g. x ~ 10~7 for water and y ~ 10~* for copper. Initial condition in time
= T(z,0) = To(z). Initial condition in space e.g. D boundary conditions: 73 (t) and T»(t)
at the two ends (or N conditions specifying T, at either or both ends.

Separation of variables works if there is an equilibrium solution T¢,(z), that is time
independent. Necessary to have t independent boundary conditions and source. The
solution then takes the form T'(z,t) = Toq(z) +T(x,t) (where T = AT in the book). Then
T = xO?T. As usual, separate variables, taking T = f(t)¥(z) to get d;In f = X and
X021 = M\ip, with X\ a constant. Typically the setup gives A < 0 to avoid exponentially
growing solutions in time and space, so get e.g. (in the DD boundary condition case; for

NN get instead cos(nmx/L) solutions).

T(x,t) =Teq(z,t) + Z A, e xtnm/L)? sin(nwx/L).

e Now consider Laplace and Poisson’s equations, V2¢ = —p, Or the wave equation in
more space dimensions, V2 — C%@fw = 0. Or the heat equation in more space dimensions,
;T = x V2T. In all of them we replace the 1d 82 with V2. The reason for this is rotational
symmetry. Separation of variables is then to take ¢» = f(¢)X ()Y (y)Z(z) if the setup is
rectangular. Or ¢ = f(t)R(r)O(0)P(¢) if the setup is spherical. Or ¢ = f(t)P(p)P(¢p)Z(2)
if it’s cylindrical. If it’s none of these, there are some other separable coordinate systems.

If it’s none of those, it might be better to just give it to a computer.



