Physics 105a, Ken Intriligator lecture 14, Nov 16, 2017
e Damped SHO with general forcing function f(t): x”/+~2'+wiz = f(t) has particular
solution given by taking the F'T of the forcing function then dividing by the differential

operator in Fourier space, and then FT-ing back:
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e Write the particular solution above of the damped SHO as
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The quantity G(t) is the Green’s function for the SHO differential equation. More gen-
erally, Green’s function is the particular solution for the case where the source is a delta
function. If we take f(t) = (), we get x,(t) = G(¢). Then, because we can write

= [dt'f(¢')d(t — '), we can think of all of the ¢ dependence being in §(¢t — ¢'), with
f(t") constants, and get the particular solution for the general case using superposition.
This works because the differential equation is linear. The same idea is used in E& M, e.g.
we can write ¢(7) = [d3F p(7)/|Z — 7| to solve V2¢(F) = 4mp(Z), with G(Z) = 1/|Z] the
Green’s function satlsfylng VQG( T) = 4n53(T).

Writing —w? — iyw + wd = (iw + s1)(iw + s2), we can compute G(t) as
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Note that [dw can be evaluated via Cauchy’s theorem, where for ¢ > 0 we close the

contour with w in the lower half plane, since then e~ — 0 for w — —ioco, whereas for

t < 0 we close in the upper half plane. The poles are at w = —is; and w = —isy, where
51,2 = %7 + iy /wd — %72 have positive real part, so the poles are in the lower half plane
(since the friction coefficient v > 0). This is how we get the O(t).

Likewise, if the differential equation is L (t) = f(t), with L = Hivzl(% — 84) then in
Fourier space L — L(w) = [[(—iw — s,) and
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where the integral is simply evaluated via Cauchy’s theorem, where (%) comes from the
closing of the contour depending on the sign of ¢, and getting poles only for the ¢t > 0
case, and with } from the sum over the poles at w = is, with residue (1/2m%) [, (sa —
sp) " Ledat,

e We can solve for the Greens function g(t, to) of a differential operator L, i.e. Lg(t) =
d(t — tp), by making use of the homogeneous solutions, since for ¢t # ty the equation for
g(t) is the homogenous solution. The idea is to write the homogenous solution for both
t <tgand t > ty in terms of general and different constants of integration C7, n and then
relate them so as to get the 0(t) at t = tg.

Consider e.g. a 2nd order ODE with L = % +ui(t) L +ug(t). Fort > tgandt < to, g
satisfies the homogenous equation, so write e.g. g(t > to) = C1x1(t) + Cox2(t). We impose
g(t < to) = 0. Now solve for C; and Cy by making ¢(t) continuous at ¢t = tg, and matching
the first derivative discontinuity to the delta function using ft?j: dtLg = [dté(t—to) = 1.
The result is

g(t,to) = O(t — to)(z2(to)z1(t) — z1(to)z2(t))/W (to), W (t) = a7 (t)z2(t) — 25 (t)z1 ()

with W called the Wronskian. For linearly independent solutions, W(t) # 0. So

(1) = / o(t,to) f(to)dto = / dto f (t0) (1 (£)2(to) — 22()1 (t0)) /W (ko).
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e Example: Lz = 2” —na'/t. Then z; = 1 and x5 = t"*!/(n + 1) and W(t) =
riwo —xhwy = —t" and g(t,tg) = (n+1)71(t(t/to)™ —t0)O(t —to). Taking e.g. f = t*O(t)
then x,(t) = [ g(t, to)tgdto = t2+0(t)/(2+ a)(1 + a — n).

e Generalize this method of patching together the homogenous solutions to solve
Lg(t,tg) = 0(t — tp) to the case where L is an N-th order differential operator. There are
N coefficients C; and we get N equations by imposing continuity of g and its first N — 2
derivatives at t = to, while d¥~1g/dt™V~1 has a discontinuity to give the §(¢). Since there
are N equations for N unknowns C'y, they can be solved.

e The Greens function gives a way to invert L: taking Lz, = f, we invert via =, =
L= f = [ g(t,to) f(to)dto. The homogeneous solution is in the nullspace of L. We eliminate
that by taking x(¢) = 0 for ¢ before when the forcing turns on. By taking ¢ to be a grid, L
becomes a matrix and the [ dtog(t, o) is seen to be matrix multiplication by L~!. Greens
functions as inversion of the matrix L. can be implemented via mathematica as a way to

numerically solve for the particular solutions.
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e Greens functions for boundary value problems, e.g. ¢” () = p(z), with some speci-
fied values of ¢ at the ends of the region, ¢(a) = V,, ¢(b) = V}. The Greens function satis-
fies Lg(z,x0) = 6(x — xo) and g(a, z¢) = g(b,zp) = 0. This can be solved similarly to the
initial value case: e.g. we use the homogenous solution for x < zg and z > x(, and match
the coefficients in the two regions to give continuity up to the effect of the delta function.
Use ¢1 = ¢1(x) — d1(a)pa(x)/pa(a) and da = ¢1(x) — ¢1(b)d2(x)/P2(b) to satisfy ¢1(a) =
$2(b) = 0. Then g(x < xg) = C1¢1(x), and g(x > x¢) = Ca¢2(x). Imposing continuity of g
at g, and g’ (z > 20)|zszy — 9 (T < 20) ooz, = 1 gives g(x < xg) = —da(x0) 1 (z)/W (x0)
and g(z > x9) = —¢1(x0)p2(x)/W (o) with W (z) = ¢ (z)d2 — dr¢1.

e In the last lecture, we discussed Greens functions for initial value problems Lz (t) =
f(t), or boundary value problems L¢(z) = p(z). The Greens functions satisfy Lg(t,tg) =
§(t —tg), or Lg(x,x0) = d(x — x0), respectively. For initial value problems, we specify the
initial conditions, e.g. that x = 0 before the forcing function turns on, whereas for the
boundary value problems we specify that ¢ = 0 at the two boundaries (this is for Dirichlet
boundary conditions; for Neumann boundary conditions we instead specify that ¢’ = 0 at
a boundary).

As mentioned in the last lecture, writing z:, = [ g(¢,to) f(to)dto or ¢ = [ g(z, x0)p(xo)dxo
can be understood as inverting the ODE by multiplying both sides by L~!. By taking time
or space to be a lattice grid, L becomes literally a matrix and the Greens function is literally
what one gets by inverting that matrix to solve e.g. Lo = p via ¢ = L™ 1p.

e Consider Lo = ¢"” + u1¢d’ + upp = p and take space a < = < b to be a grid
r — xn = a+ nAzx, with Az = (b —a)/M. When we take space or time to be a grid, we
have some options for how to write derivatives, which all reduce to the ordinary derivative
in the limit M — oco. Apparent differences between those options can be called lattice
artifacts, but for finite M some are more convenient than others, i.e. some artifacts go
away faster with 1/M than others. Write ¢(x,,) or ¢(t,,) as ¢,,. As discussed in Table 2.3 of
Dubin, there are three options for first derivatives, forward difference, backward difference,
centered difference, with centered difference most accurate: ¢, ~ (¢p+1—dn—1)/2Ax, and
¢! ~ (ppi1 — 2¢n + ¢n_1)/Ax?. Using centered difference derivatives, get

Ly = (Ont1,m — 260,m + 5n_17m)Aa:_2 + %ul(n)(dnﬂm — 6n_17m)Ax_1 + 9 muo(n).
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Illustrate this in Mathematica and ¢ = L~'p. Compared with the shooting method,

this has some advantages - but it only works for linear differential equations.



