Physics 105a, Ken Intriligator lecture 13, Nov 14, 2017
e Example: f(t) = e 'O(t) + f(w) = (1 —iw)~ L.
e Periodic version of the delta function: §77 (1) =Y 00 §(t—mT) =S 00 e 2mt/T,

More generally, if a function is periodic, f(t + T) = f(t) then the Fourier integral and

Fourier sum expressions are related via
/ flw —M = Z fre 2T with f(w Z 27 fnd(w — 270/ T).

e Damped SHO with general forcing function f(t): x”/+~2'+wiz = f(t) has particular
solution given by taking the F'T of the forcing function then dividing by the differential

operator in Fourier space, and then FT-ing back:

o0 e—iwtf<w) dw [e’e] [e’e) dw e_iw(t_t’)
t) = — = dt’ f(t' / — )
7(f) /_oo —w? — iyw + Wi 27 /_Oo J() oo 2T —w? —iyw + wj

e Write the particular solution above of the damped SHO as

e—iw(t—t’)

wp<t>=/00 dt’ f(t")G(t = t') G(t—t’)z/oo dw

2 _ 2"
oo oo 2T —w* — 1YW + Wj

The quantity G(t) is the Green’s function for the SHO differential equation. More gen-
erally, Green’s function is the particular solution for the case where the source is a delta
function. If we take f(tf) = 6(¢), we get z,(t) = G(t). Then, because we can write

= [dt'f(t')6(t — t'), we can think of all of the ¢ dependence being in 6(t — ¢'), with
f(t") constants, and get the particular solution for the general case using superposition.
This works because the differential equation is linear. The same idea is used in E& M, e.g.
we can write ¢(T) = [ d>7'p(&)/|Z — &'| to solve V2¢(Z) = 4mp(Z), with G(Z) = 1/|Z| the
Green’s function satlsfymg VQG(QZ) = 4763(T).

Writing —w? — iyw + w3 = (iw + s1)(iw + s2), we can compute G(t) as

&) = 1 /d_we_iwt( L1 ): o(t) (et — %21
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Note that [dw can be evaluated via Cauchy’s theorem, where for ¢ > 0 we close the

contour with w in the lower half plane, since then e~ — 0 for w — —ioco, whereas for
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t < 0 we close in the upper half plane. The poles are at w = —is; and w = —iso, where

51,2 = %7 + iy Jwd — in have positive real part, so the poles are in the lower half plane
(since the friction coefficient v > 0). This is how we get the O(t).

Likewise, if the differential equation is L (t) = f(t), with L = Hivzl(% — $4) then in
Fourier space L — L(w) = [[(—iw — s,) and

dwe Twt N 1 .
G(t)—/%L > T (sa e

a=1b#a

where the integral is simply evaluated via Cauchy’s theorem, where O(¢) comes from the
closing of the contour depending on the sign of ¢, and getting poles only for the ¢ > 0
case, and with } from the sum over the poles at w = is, with residue (1/274) [, (sa
sp) " tesat,

e We can solve for the Greens function g(t,ty) of a differential operator L, i.e. Lg(t) =
d(t — to), by making use of the homogeneous solutions, since for ¢ # t; the equation for
g(t) is the homogenous solution. The idea is to write the homogenous solution for both
t <typandt >ty in terms of general and different constants of integration C;_ n and then
relate them so as to get the 6(t) at t = tq.

Consider e.g. a 2nd order ODE with L = j—; +ur(t) & +ug(t). Fort > tgandt < to, g
satisfies the homogenous equation, so write e.g. g(t > tg) = C1x1(t) + Cax2(t). We impose
g(t < to) = 0. Now solve for C; and Cy by making ¢(t) continuous at ¢t = tg, and matching
the first derivative discontinuity to the delta function using Lzojee dtLg = [dté(t—to) = 1.
The result is

gt to) = O(t — to)(z2(to)z1(t) — z1(to)z2(t))/W (to), W (t) = a7 (t)z2(t) — 25(t)21 ()

with W called the Wronskian. For linearly independent solutions, W (t) # 0. So

(1) = / ot to) f(to)dto = / dto f (t0) (1 (£)2(to) — 22(t)1 (t0)) /W (ko).

— 00 — 00

e Example: Lx = 2" — na'/t. Then z; = 1 and 2 = t""1/(n + 1) and W(t) =
xxo —x’2x1 = —t" and g(t,to) = (n+1)"L(t(t/to)™ —t0)O(t —to). Taking e.g. f =t*O(t)
then z, (¢ fo (t, to)tsdto = t2T0() /(2 + ) (1 + a — n).

) Generallze this method of patching together the homogenous solutions to solve
Lg(t,tg) = 6(t — tp) to the case where L is an N-th order differential operator. There are
N coefficients C; and we get N equations by imposing continuity of g and its first N — 2
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derivatives at t = to, while d¥~1g/dt™~1 has a discontinuity to give the §(¢). Since there
are N equations for N unknowns C'y, they can be solved.

e The Greens function gives a way to invert L: taking Lz, = f, we invert via z, =
L=Yf = [g(t,to) f(to)dto. The homogeneous solution is in the nullspace of L. We eliminate
that by taking x(t) = 0 for ¢ before when the forcing turns on. By taking ¢ to be a grid, L
becomes a matrix and the [ dtog(t,to) is seen to be matrix multiplication by L™!. Greens
functions as inversion of the matrix L. can be implemented via mathematica as a way to
numerically solve for the particular solutions.

e Greens functions for boundary value problems, e.g. ¢”(z) = p(z), with some speci-
fied values of ¢ at the ends of the region, ¢(a) = V,, ¢(b) = V. The Greens function satis-
fies Lg(z,x0) = 6(x — xo) and g(a,z¢) = g(b,zp) = 0. This can be solved similarly to the
initial value case: e.g. we use the homogenous solution for x < zg and x > x(, and match
the coefficients in the two regions to give continuity up to the effect of the delta function.
Use g1 = ¢1(x) — dp1(a)da(x)/d2(a) and ¢y = d1(x) — ¢1(b)d2(x)/P2(D) to satisfy ¢1(a) =
$2(b) = 0. Then g(z < x¢) = C161(x), and g(x > 1) = Ca¢a(x). Imposing continuity of g
at wg, and ¢’ (z > 20)|s—szy — 9 (T < 20) ooz, = 1 gives g(x < mg) = —da(x0) 1 (z)/W (x0)
and g(z > x0) = —¢1(x0)2(x) /W (20) with W (z) = ¢} (x)d2 — Prn.



