
Physics 105a, Ken Intriligator lecture 13, Nov 14, 2017

• Example: f(t) = e−tΘ(t) ↔ f̃(ω) = (1− iω)−1.

• Periodic version of the delta function: δP,T (t) =
∑∞

m=−∞ δ(t−mT ) =
∑∞

n=−∞ e−i2πnt/T .

More generally, if a function is periodic, f(t + T ) = f(t) then the Fourier integral and

Fourier sum expressions are related via

f(t) =

∫

f̃(ω)e−iωt dω

2π
=
∑

n

f̃ne
−2πint/T with f̃(ω) =

∑

n

2πf̃nδ(ω − 2πn/T ).

• Damped SHO with general forcing function f(t): x′′+γx′+ω2
0x = f(t) has particular

solution given by taking the FT of the forcing function then dividing by the differential

operator in Fourier space, and then FT-ing back:

xp(t) =

∫ ∞

−∞

e−iωtf̃(ω)

−ω2 − iγω + ω2
0

dω

2π
=

∫ ∞

−∞

dt′f(t′)

∫ ∞

−∞

dω

2π

e−iω(t−t′)

−ω2 − iγω + ω2
0

.

• Write the particular solution above of the damped SHO as

xp(t) =

∫ ∞

−∞

dt′f(t′)G(t− t′) G(t− t′) ≡

∫ ∞

−∞

dω

2π

e−iω(t−t′)

−ω2 − iγω + ω2
0

.

The quantity G(t) is the Green’s function for the SHO differential equation. More gen-

erally, Green’s function is the particular solution for the case where the source is a delta

function. If we take f(t) = δ(t), we get xp(t) = G(t). Then, because we can write

f(t) =
∫

dt′f(t′)δ(t − t′), we can think of all of the t dependence being in δ(t − t′), with

f(t′) constants, and get the particular solution for the general case using superposition.

This works because the differential equation is linear. The same idea is used in E& M, e.g.

we can write φ(~x) =
∫

d3~x′ρ(~x′)/|~x− ~x′| to solve ∇2φ(~x) = 4πρ(~x), with G(~x) = 1/|~x| the

Green’s function satisfying ∇2G(~x) = 4πδ3(~x).

Writing −ω2 − iγω + ω2
0 ≡ (iω + s1)(iω + s2), we can compute G(t) as

G(t) =
1

s2 − s1

∫

dω

2π
e−iωt

(

1

iω + s1
−

1

iω + s2

)

=
Θ(t)

s1 − s2
(es1t − es2t)

= Θ(t)
e−γt/2

√

ω2
0 −

1
4
γ2

sin

(

√

ω2
0 −

1

4
γ2t

)

.

Note that
∫

dω can be evaluated via Cauchy’s theorem, where for t > 0 we close the

contour with ω in the lower half plane, since then e−iωt → 0 for ω → −i∞, whereas for
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t < 0 we close in the upper half plane. The poles are at ω = −is1 and ω = −is2, where

s1,2 = 1
2
γ ± i

√

ω2
0 −

1
4
γ2 have positive real part, so the poles are in the lower half plane

(since the friction coefficient γ > 0). This is how we get the Θ(t).

Likewise, if the differential equation is Lψ(t) = f(t), with L =
∏N

a=1(
d
dt − sa) then in

Fourier space L→ L̃(ω) =
∏

(−iω − sa) and

G(t) =

∫

dω

2π

e−iωt

L̃(ω)
= Θ(t)

N
∑

a=1

∏

b6=a

(sa − sb)
−1esat

where the integral is simply evaluated via Cauchy’s theorem, where Θ(t) comes from the

closing of the contour depending on the sign of t, and getting poles only for the t > 0

case, and with
∑

a from the sum over the poles at ω = isa with residue (1/2πi)
∏

b6=a(sa−

sb)
−1esat.

• We can solve for the Greens function g(t, t0) of a differential operator L, i.e. Lg(t) =

δ(t − t0), by making use of the homogeneous solutions, since for t 6= t0 the equation for

g(t) is the homogenous solution. The idea is to write the homogenous solution for both

t < t0 and t > t0 in terms of general and different constants of integration C1...N and then

relate them so as to get the δ(t) at t = t0.

Consider e.g. a 2nd order ODE with L = d2

dt2 +u1(t)
d
dt +u0(t). For t > t0 and t < t0, g

satisfies the homogenous equation, so write e.g. g(t > t0) = C1x1(t)+C2x2(t). We impose

g(t < t0) = 0. Now solve for C1 and C2 by making g(t) continuous at t = t0, and matching

the first derivative discontinuity to the delta function using
∫ t0+ǫ

t0−ǫ
dtLg =

∫

dtδ(t− t0) = 1.

The result is

g(t, t0) = Θ(t− t0)(x2(t0)x1(t)− x1(t0)x2(t))/W (t0), W (t) ≡ x′1(t)x2(t)− x′2(t)x1(t)

with W called the Wronskian. For linearly independent solutions, W (t) 6= 0. So

xp(t) =

∫ t

−∞

g(t, t0)f(t0)dt0 =

∫ t

−∞

dt0f(t0)(x1(t)x2(t0)− x2(t)x1(t0))/W (t0).

• Example: Lx = x′′ − nx′/t. Then x1 = 1 and x2 = tn+1/(n + 1) and W (t) =

x′1x2−x
′
2x1 = −tn and g(t, t0) = (n+1)−1(t(t/t0)

n− t0)Θ(t− t0). Taking e.g. f = tαΘ(t)

then xp(t) =
∫ t

0
g(t, t0)t

α
0 dt0 = t2+αΘ(t)/(2 + α)(1 + α− n).

• Generalize this method of patching together the homogenous solutions to solve

Lg(t, t0) = δ(t− t0) to the case where L is an N-th order differential operator. There are

N coefficients Ci and we get N equations by imposing continuity of g and its first N − 2
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derivatives at t = t0, while d
N−1g/dtN−1 has a discontinuity to give the δ(t). Since there

are N equations for N unknowns CN , they can be solved.

• The Greens function gives a way to invert L: taking Lxp = f , we invert via xp =

L−1f =
∫

g(t, t0)f(t0)dt0. The homogeneous solution is in the nullspace of L. We eliminate

that by taking x(t) = 0 for t before when the forcing turns on. By taking t to be a grid, L

becomes a matrix and the
∫

dt0g(t, t0) is seen to be matrix multiplication by L−1. Greens

functions as inversion of the matrix L can be implemented via mathematica as a way to

numerically solve for the particular solutions.

• Greens functions for boundary value problems, e.g. φ′′(x) = ρ(x), with some speci-

fied values of φ at the ends of the region, φ(a) = Va, φ(b) = Vb. The Greens function satis-

fies Lg(x, x0) = δ(x− x0) and g(a, x0) = g(b, x0) = 0. This can be solved similarly to the

initial value case: e.g. we use the homogenous solution for x < x0 and x > x0, and match

the coefficients in the two regions to give continuity up to the effect of the delta function.

Use φ̄1 = φ1(x)− φ1(a)φ2(x)/φ2(a) and φ̄2 = φ1(x)− φ1(b)φ2(x)/φ2(b) to satisfy φ1(a) =

φ2(b) = 0. Then g(x < x0) = C1φ̄1(x), and g(x > x0) = C2φ̄2(x). Imposing continuity of g

at x0, and g
′(x > x0)|x→x0

− g′(x < x0)|x→x0
= 1 gives g(x < x0) = −φ̄2(x0)φ1(x)/W (x0)

and g(x > x0) = −φ̄1(x0)φ̄2(x)/W (x0) with W (x) = φ̄′1(x)φ̄2 − φ̄′2φ̄1.
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