Physics 105a, Ken Intriligator lecture 11, Nov 7, 2017

• Recall from last time: Fourier transforms:

$$
f(t) = \int_{-\infty}^{\infty} \tilde{f}(\omega)e^{-i\omega t} \frac{d\omega}{2\pi} \qquad \leftrightarrow \qquad \tilde{f}(\omega) = \int_{-\infty}^{\infty} f(t)e^{i\omega t} dt.
$$

Also, there are similar formulae for Fourier transforms in space, with a conventional minus sign difference (so combining gives traveling waves moving to the right):

$$
f(x) = \int_{-\infty}^{\infty} \tilde{f}(k)e^{ikx} \frac{dk}{2\pi} \qquad \leftrightarrow \qquad \tilde{f}(k) = \int_{-\infty}^{\infty} f(x)e^{-ikx} dx.
$$

Some people, and Mathematica, use $\tilde{f}(\omega)_{there} = \sqrt{2\pi} \tilde{f}(\omega)_{here}$, which has the advantage that the formulas look more symmetric: both integrals then have a $1/\sqrt{2\pi}$. Personally, I prefer the above normalization. Physically, it makes sense that the $d\omega$ always comes with a $1/2\pi$: it arises from counting modes in a periodic box. For example, consider $f(t) = e^{-i\omega t}$ and require it to have periodicity $t \to t + T$, then $\omega = \omega_n = 2\pi n/T$, and nearby modes have $d\omega = 2\pi dn/T$, so $\sum_n \to \int dn = T(d\omega/2\pi)$. Likewise, in space, we can consider $e^{i(\vec{k}\cdot\vec{x}-\omega t)}$ and periodicity in space gives $k_i=2\pi n_i/L_i$, so $\sum_{n_i}\to \int L_i dk_i/2\pi$. So in time and space we have $TV \int d\omega d^3 \vec{k}/(2\pi)^4$. Aside: in relativity frequency and wave-number combine into a 4-vector $k^{\mu} = (\omega, \vec{k})$ where we set $c = 1$ and likewise $x^{\mu} = (t, \vec{k})$, and then we see that $\omega t - \vec{k} \cdot \vec{x}$ is Lorentz invariant. The integration over spacetime or frequency space, $dtd^3\vec{x} = d^4x$ and $d\omega d^3\vec{k} = d^4k$, are also Lorentz invariant (observers moving at relative velocities get different $d\omega$ and $d^3\vec{k}$, but the product is invariant).

Let's show that the above makes sense by plugging $\tilde{f}(\omega)$ back into $f(t)$:

$$
f(t) = \int_{-\infty}^{\infty} e^{-i\omega t} \frac{d\omega}{2\pi} \int_{-\infty}^{\infty} dt' f(t') e^{i\omega t'} f(t') \equiv \int K(t'-t) f(t') dt', \qquad K(t') = \int \frac{d\omega}{2\pi} e^{i\omega t'}.
$$

This works because (with " $=$ " because we could, but won't, add various legal disclaimers)

$$
\int \frac{d\omega}{2\pi} e^{i\omega t} \qquad \mu = \nu \qquad \delta(t), \qquad \text{i.e.} \quad f(t) = \delta(t) \leftrightarrow \tilde{f}(\omega) = 1
$$

• Note that the Fourier transform is a linear operation: $FT[f(t)] = \tilde{f}(\omega)$ satisfies $FT[\sum_i c_i f_i] = \sum_i c + iFT[f_i]$. So is the inverse transformation, $(FT)^{-1} \tilde{f} = f$, and $(FT)(FT)^{-1} = 1$ for sufficiently nice functions. There is a nice way to represent all of this in QM notation:

$$
\psi(x) = \langle x | \psi \rangle, \qquad \tilde{\psi}(k) = \langle k | \psi \rangle,
$$

are like representing the same vector (the quantity ψ) in terms of different basis vectors (either $|x\rangle$ for position space or $|kl\rangle$ for wavenumber = momentum space = Fourier transform space). The different basis vectors are related by $\langle x|k\rangle = \langle k|x\rangle^* = e^{ikx}$ and $\langle x'|x\rangle = \delta(x - x')$ and $\langle k'|k\rangle = 2\pi\delta(k'-k)$. The fact that the basis is complete is written as

$$
1 = \int \frac{dk}{2\pi} |k\rangle\langle k| = \int dx |x\rangle\langle x|.
$$

• Fourier transforms convert $\frac{d}{dt} \to -i\omega$ and $\int dt \to 1/(-i\omega)$ up to constants. Also, they convert convolutions to multiplication: if $h(t) = \int dt_1 f(t_1)g(t - t_1)$, then $\tilde{h}(\omega) =$ $f(\omega)\tilde{g}(\omega)$.

• Recall $f(t) = \delta(t) \leftrightarrow \tilde{f}(\omega) = 1$ and $f(t) = 1 \leftrightarrow \tilde{f}(\omega) = 2\pi\delta(\omega)$. Now consider the FT of $H(t) = \Theta(t)$. Since the FT converts $\frac{d}{dt} \to -i\omega$, and $\frac{d}{dt}\Theta(t) = \delta(t)$, we might guess that the FT of $H(t)$ is i/ω . Actually, $\tilde{H}(\omega) = \int_0^\infty dt(\cos \omega t + i \sin \omega t) = \pi \delta(\omega) + i\omega^{-1}$. Note that $-i\omega$ acts on this to give 1, as expected, since $\omega\delta(\omega) = 0$.

• Note that the FT of an even or odd function is also even or odd: if $f(-t) = \pm f(t)$ then $f(-\omega) = \pm f(\omega)$. For exa $H(t) = \frac{1}{2}(1 + \text{sign}(t))$ with 1 even and sign odd. In the FT, 1 $\frac{1}{2}1 \to \pi \delta(\omega)$ and $\frac{1}{2}$ sign $(t) \to i/\omega$.