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• Recall from last time: Fourier transforms:

f(t) =

∫
∞

−∞

f̃(ω)e−iωt dω

2π
↔ f̃(ω) =

∫
∞

−∞

f(t)eiωtdt.

Also, there are similar formulae for Fourier transforms in space, with a conventional minus

sign difference (so combining gives traveling waves moving to the right):

f(x) =

∫
∞

−∞

f̃(k)eikx
dk

2π
↔ f̃(k) =

∫
∞

−∞

f(x)e−ikxdx.

Some people, and Mathematica, use f̃(ω)there =
√
2πf̃(ω)here, which has the advan-

tage that the formulas look more symmetric: both integrals then have a 1/
√
2π. Personally,

I prefer the above normalization. Physically, it makes sense that the dω always comes with

a 1/2π: it arises from counting modes in a periodic box. For example, consider f(t) = e−iωt

and require it to have periodicity t → t + T , then ω = ωn = 2πn/T , and nearby modes

have dω = 2πdn/T , so
∑

n →
∫
dn = T (dω/2π). Likewise, in space, we can consider

ei(
~k·~x−ωt) and periodicity in space gives ki = 2πni/Li, so

∑
ni

→
∫
Lidki/2π. So in time

and space we have TV
∫
dωd3~k/(2π)4. Aside: in relativity frequency and wave-number

combine into a 4-vector kµ = (ω,~k) where we set c = 1 and likewise xµ = (t, ~k), and then

we see that ωt − ~k · ~x is Lorentz invariant. The integration over spacetime or frequency

space, dtd3~x = d4x and dωd3~k = d4k, are also Lorentz invariant (observers moving at

relative velocities get different dω and d3~k, but the product is invariant).

Let’s show that the above makes sense by plugging f̃(ω) back into f(t):

f(t) =

∫
∞

−∞

e−iωt dω

2π

∫
∞

−∞

dt′f(t′)eiωt′f(t′) ≡
∫
K(t′ − t)f(t′)dt′, K(t′) =

∫
dω

2π
eiωt′ .

This works because (with “ = ” because we could, but won’t, add various legal disclaimers)

∫
dω

2π
eiωt “ = ” δ(t), i.e. f(t) = δ(t) ↔ f̃(ω) = 1

• Note that the Fourier transform is a linear operation: FT [f(t)] = f̃(ω) satisfies

FT [
∑

i cifi] =
∑

i c + iFT [fi]. So is the inverse transformation, (FT )−1f̃ = f , and

(FT )(FT )−1 = 1 for sufficiently nice functions. There is a nice way to represent all of this

in QM notation:

ψ(x) = 〈x|ψ〉, ψ̃(k) = 〈k|ψ〉,
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are like representing the same vector (the quantity ψ) in terms of different basis vec-

tors (either |x〉 for position space or |kl〉 for wavenumber = momentum space = Fourier

transform space). The different basis vectors are related by 〈x|k〉 = 〈k|x〉∗ = eikx and

〈x′|x〉 = δ(x− x′) and 〈k′|k〉 = 2πδ(k′ − k). The fact that the basis is complete is written

as

1 =

∫
dk

2π
|k〉〈k| =

∫
dx|x〉〈x|.

• Fourier transforms convert d
dt

→ −iω and
∫
dt → 1/(−iω) up to constants. Also,

they convert convolutions to multiplication: if h(t) =
∫
dt1f(t1)g(t − t1), then h̃(ω) =

f̃(ω)g̃(ω).

• Recall f(t) = δ(t) ↔ f̃(ω) = 1 and f(t) = 1 ↔ f̃(ω) = 2πδ(ω). Now consider the

FT of H(t) = Θ(t). Since the FT converts d
dt

→ −iω, and d
dt
Θ(t) = δ(t), we might guess

that the FT of H(t) is i/ω. Actually, H̃(ω) =
∫
∞

0
dt(cosωt + i sinωt) = πδ(ω) + iω−1.

Note that −iω acts on this to give 1, as expected, since ωδ(ω) = 0.

• Note that the FT of an even or odd function is also even or odd: if f(−t) = ±f(t)
then f(−ω) = ±f(ω). For exa H(t) = 1

2(1+ sign(t)) with 1 even and sign odd. In the FT,
1
2
1 → πδ(ω) and 1

2
sign(t) → i/ω.
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