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• Recall periodic f(t+ T ) = f(t) has a Fourier expansion

f(t) =

∞∑

n=−∞

f̃ne
−2πint/T = a0 +

∞∑

n=1

(an cos(2πnt/T ) + bn sin(2πnt/T )).

With

f̃n =

∫ T+t0

t0

dt

T
f(t)e2πint/T .

Or equivalently

a0 =

∫ T+t0

t0

dt

T
f(t), am>0 = 2

∫ T+t0

t0

dt

T
f(t) cos(2πmt/T ), bm>0 = 2

∫ T+t0

t0

dt

T
f(t) sin(2πmt/T ),

Note that, for real f(t), f̃n = f̃∗
−n. The exponential and sin and cos forms are related by

f̃0 = a0, f̃n>0 = 1

2
(an + ibn), f̃n<0 = 1

2
(a−n − ib−n).

• Solving boundary value problems using Fourier series, e.g. for the shaken spring

demo. Examples with φ(x) and ∂2
xφ = −ρ(x) with Dirichlet (fixed value) and boundary,

say φ(0) = φ0 and φ(L) = φ1, do expansion in sin(nπx/L). For Neumann boundary

conditions the derivatives at the endpoints are instead specified, and then we can instead

expand in cos(nπx/L).

Example: take ρ(x) = Ax(L − x)2 and solve it for x ∈ [0, L]. Let’s take the

odd periodic extension, since ρ(0) = ρ(L) = 0, so ρ(x) =
∑

n ρ̃n sin(nπx/L) and use

Mathematica to show ρ̃n = 4AL3(2 + (−1)n)/n3π3. So the particular solution has

φp(x) =
∑

n φ̃n sin(nπx/L) with φ̃n = ρ̃n/(nπ/L)
2 = 4AL5(2 + (−1)n)/n5. Very nicely

convergent as 1/n5. Check units: expect ρ ∼ Q/L3 and φ ∼ Q/L so A ∼ Q/L6; works.

The electric field contribution is then ~Ep(x) = −x̂∂xφp = −x̂
∑

n(nπ/L)φ̃n cos(nπx/L).

• The step function is called HeavisideTheta[t] ≡ H[t] ≡ Θ[t]; it is 1 for t > 0 and

0 for t < 0. Note that d
dtH(t) = δ(t): this is called the Dirac delta function, and it is

zero everywhere, and infinite at t = 0, such that
∫ b

a
dtδ(t) = H(b) − H(a), i.e. it is 1 if

the interval [a, b] contains the origin, and 0 otherwise. In words: the delta function is zero

everywhere except where its argument is zero, and it blows up there such that the area is

1. It can be defined from various smooth functions via a limiting procedure, e.g. from the

Gaussian normal distribution with standard deviation σ → 0.

You might have already met the delta function in your E&M class, in the context

of point charges qi at positions ~xi having density ρ =
∑

i qiδ
3(~x − ~xi), where δ3(~x) ≡

1



δ(x)δ(y)δ(z). Taking φ(~x) = q/r gives ~E = −∇φ = qr̂/r2 and Gauss’ law gives
∫
V
dV ∇ ·

~E =
∮
∂V

~E · d~a = 4πq provided that V includes the origin. We see that ∇2(1/r) =

−4πδ3(~r). A charge distribution of point particles has φ(~x) =
∑

i qi/|~x− ~xi| which solves

Poisson’s equation ∇2~φ = −4π~ρ with ρ =
∑

i qiδ
3(~x− ~xi).

• Compare δ(x−y) and δn,m. For any function f(x), note that
∫
dyf(y)δ(x−y) = f(x).

Likewise, for any Fm,
∑

n Fmδn,m = Fn.

• Fourier transforms:

f(t) =

∫ ∞

−∞

f̃(ω)e−iωt dω

2π
↔ f̃(ω) =

∫ ∞

−∞

f(t)eiωtdt.

Some people, and Mathematica, use f̃(ω)there =
√
2πf̃(ω)here, which has the advantage

that the formulas look more symmetric: both integrals then have a 1/
√
2π. Personally, I

prefer the above normalization. Physically, it makes sense that the dω always comes with a

1/2π: it arises from counting modes in a periodic box. For example, consider f(t) = e−iωt

and require it to have periodicity t → t + T , then ω = ωn = 2πn/T , and nearby modes

have dω = 2πdn/T , so
∑

n →
∫
dn = T (dω/2π).

Also, there are similar formulae for Fourier transforms in space, with a conventional

minus sign difference (so combining gives traveling waves moving to the right):

f(x) =

∫ ∞

−∞

f̃(k)eikx
dk

2π
↔ f̃(k) =

∫ ∞

−∞

f(x)e−ikxdx.

Let’s show that the above makes sense by plugging f̃(ω) back into f(t):

f(t) =

∫ ∞

−∞

e−iωt dω

2π

∫ ∞

−∞

dt′f(t′)eiωt′f(t′) ≡
∫

K(t′ − t)f(t′)dt′, K(t′) =

∫
dω

2π
eiωt′ .

This works because (with “ = ” because we could, but won’t, add various legal disclaimers)

∫
dω

2π
eiωt “ = ” δ(t), i.e. f(t) = δ(t) ↔ f̃(ω) = 1

Note also that the Fourier transform has d
dtf(t) → −iωf̃(ω) so one seemingly obtains

H(t) → i/ω. Actually this requires some care and the answer is H(t) → i/ω + πδ(ω).

ended here

• Example: f(t) = 1/(1 + s2t2) gives (either via Mathematica or Cauchy’s theorem)

f̃(ω) =

∫ ∞

−∞

(1 + s2t2)−1eiωtdt = πe−|ωs|/|s|.

2



Recall how to do it via Cauchy’s theorem: we can think if the integral as in the complex

t plane, and can close the contour for t → +∞ if ω > 0, or t → −i∞ if ω < 0. The poles

of the integrand are at t± = ±i/|s|, and we can write f(t) = 1/s2(t− t+)(t− t−), so the

residue at t± is ±1/s2(t+ − t−) = 1/2|s|i. For ω > 0 we get the pole at t+ and for ω < 0

we get the pole at t−, so f̃(ω) = 2πi(1/2|s|i)e−|ωs|.

• Example: f(t) = e−tΘ(t) ↔ f̃(ω) = (1− iω)−1.

• Fourier transforms convert d
dt → −iω and

∫
dt → 1/(−iω). Also, they convert

convolutions to multiplication: if h(t) =
∫
dt1f(t1)g(t− t1), then h̃(ω) = f̃(ω)g̃(ω).

• Periodic version of the delta function: δP,T (t) =
∑∞

m=−∞ δ(t−mT ) =
∑∞

n=−∞ e−i2πnt/T .

More generally, if a function is periodic, f(t + T ) = f(t) then the Fourier integral and

Fourier sum expressions are related via

f(t) =

∫
f̃(ω)e−iωt dω

2π
=

∑

n

f̃ne
−2πint/T with f̃(ω) =

∑

n

2πf̃nδ(ω − 2πn/T ).

• Damped SHO with general forcing function f(t): x′′+γx′+ω2
0x = f(t) has particular

solution given by

xp(t) =

∫ ∞

−∞

e−iωtf̃(ω)

−ω2 − iγω + ω2
0

dω

2π
.

3


