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Quantum Mechanics A (Physics 212A) Fall 2016
Worksheet 4 – Solutions

Announcements

• The 212A web site is:

http://keni.ucsd.edu/f16/ .

Please check it regularly! It contains relevant course information!

Problems

1. Give it a Kick

Consider the D = 1 simple harmonic oscillator in its groundstate. Suppose something
kicks the system imparting an additional momentum p0. What’s the probability the
system remains in the ground state?

(a) What’s the new Hamiltonian for the system? Express this in terms of the usual
ladder operators â and â†

Hnew = (p+p0)2
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Show that the Â are ladder operators: [Â, Â†] = 1

This follows immediately from [â, â†] = 1 and that β is a constant.

(c) Rewrite the new Hamiltonian in terms of these operators, what do you find?

Hnew = ω(Â†Â+ 1
2
)

(d) Relate the original groundstate |0〉 to the new groundstate |β〉
Since the new Hamiltonian is another harmonic oscillator it must be that:

Â|β〉 = 0 = (â− β)|β〉 or in other words â|β〉 = β|β〉 this is a coherent state.

(e) Using |n〉 = (â†)n√
n!
|0〉 compute P = |〈0|β〉|2

Hint: Insert identity and use the relation above.

|β〉 = 1|β〉 =
∑

n |n〉〈n|β〉 =
∑

n |n〉〈0|
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Therefore: |〈0|β〉|2 = e−|β|
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2. Bogliubov Transformation

We solved a new Hamiltonian by defining a set of transformed creation/annihilation
operators which satisfy the same algebra [A,A†] = 1

More generally consider b̂ = â cosh η + â† sinh η

(a) Show that [b̂, b̂†] = 1

[b̂, b̂†] = cosh2 η[a, a†]− sinh2 η[a, a†] = 1[a, a†] = 1

(b) Show that b̂ = UâU † for U = e
η
2
(ââ−â†â†)

Time to bust out BCH: UâU † = â+ [A, a] + 1
2
[A, [A, a]] + · · ·

Where A ≡ η
2
(ââ− â†â†). Note [a†a†, a] = −2a† and [aa, a†] = 2a

So [A, a] = ηa† and [A, [A, a]] = η[A, a†] = η2a

So everything decomposes into odd terms with a† and even terms a. All plus
signs. This gives the form of b

(c) Show for fermionic operators ĉ2 = 0 = (ĉ†)2 and {ĉ, ĉ†} = 1 that

d̂ = ĉ cos θ + ĉ† sin θ is the analogous operator

Similar but the anticommutation means {d, d†} = cos2 θ{ĉ, ĉ†}+ sin2 θ{ĉ, ĉ†} = 1

Now consider the Hamiltonian

Ĥ = ωâ†â+
V
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(c) Diagonalize the Hamiltonian (1) using the b̂ operators for suitably chosen η

We should look for an operator of the form H = Ωb†b+ F for some constant F

b†b = (cosh2 η + sinh2 η)a†a+ sinh2 η + cosh η sinh η(aa+ a†a†)

So Ω cosh(2η) = ω and Ω sinh(2η) = V =⇒ V = ω tanh(2η)

It also must be that Ω sinh2 η+F = 0 ; solving for Ω and F independently is just
algebra. Ω = ω cosh(2η)− V sinh(2η)

The spectrum is simple now though! En = Ωn+ F

(d) Show there is a limit on V for which this Hamiltonian makes physical sense

Ω must be positive. ω cosh(2η) > V sinh(2η) =⇒ V < ω
tanh(2η)

= ω2

V

Thus V < ω
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