
11/28/16 Lecture 18 outline

• Last time: |j1j2;m1m2〉 ≡ |j1, m1〉 ⊗ |j2, m2〉, can give |j1j2; jm〉 for |j1 − j2| ≤
j ≤ j1 + j2, with j mod integers (i.e. if j1 + j2 is an integer, then so are all j, and if it

is half-integer then so are all j). The Clebsch-Gordon coefficients 〈j1j2;m1m2|j1j2; jm〉.
Using Jz = J1z+J2z, show m = m1+m2. Recipe: start with case j = j1+j2, m = j1+j2,

where the only possibility is |j1j1〉 ⊗ |j2j2〉. Now use J− = J1− + J2− to get all m values

for j = j1 + j2. Now get j = m = j1 + j2 − 1 by orthogonality:

|j1 + j2; j1 + j2 − 1〉 =
√

j1
j1 + j2

|j1, j1 − 1〉|j2j2〉+
√

j2
j1 + j2

|j1j1〉|j2j2 − 1〉,

|j1 + j2 − 1; j1 + j2 − 1〉 = −
√

j2
j1 + j2

|j1, j1 − 1〉|j2j2〉+
√

j1
j1 + j2

|j1j1〉|j2j2 − 1〉.

Now lower m to get all j = j1 + j2 − 1 cases. Now get j = mj1 + j2 − 2, by imposing

orthogonality with the known (from previous steps) vectors with j1 + j2 and j1 + j2 − 1

and m = j1 + j2 − 2. Keep going until done.

• Example of combining spin 1 and spin 1/2. Clebsch Gordon coefficients.

• Example of combining three spin 1/2s.

• Symmetry or antisymmetry for identical Bosons or Fermions.

• Consider the case j1 = ℓ an integer, and j2 = 1
2 . This is of use for Hydrogen etc

where the electron has both orbital and spin angular momentum. Get j = ℓ± 1
2 for ℓ > 0,

and j = 1
2 for ℓ = 0. Note that ~L · ~S = 1

2(
~J2 − ~L2 − ~S2) is (h̄2/2)(j(j+1)− ℓ(ℓ+1)− 3/4)

is ℓh̄2/2 for j = ℓ+ 1
2 and −(ℓ+ 1)h̄2/2 for j = ℓ− 1

2 .

• Atomic notation: 2S+1LJ , with L = 0, 1, 2, 3, . . . denoted by S, P,D, F, . . . e.g. 2P3/2

means ℓ = 1, s = 1/2, j = 3/2. The ground state of He is 1S0.

• Recall [Ja, Jb] = ih̄ǫabcJc. Likewise for any vector Va, have [Va, Jb] = ih̄ǫabcVc; this is

determined by the fact that angular momentum generates rotations. Can be easily verified

for Va = Xa, or Va = Pa as examples.

Define T
(1)
0 ≡

√

3
4πVz and T

(1)
±1 =

√

3
4π (∓

Vx±iVy√
2

). These definitions fit with Y ℓ=1
m in

terms of (θ, φ) if we take ~V = ~X/r. With these definitions, we have [Jz, T
(1)
m ] = h̄mT

(1)
m and

[J±, T
(1)
m ] = h̄

√

(1±m)(1±m+ 1)T
(1)
m±1. Recall J±|jm〉 =

√

(j ∓m)(j ±m+ 1)h̄|j,m±
1〉. The spherical vector transforms the same way. More generally spherical tensor

operators: let T
(k)
q be an operator with ℓ = k and m = q. For example, T

(2)
0 =

U+V − +2U0V0 + U−U+ where ~U and ~V are two vectors and U± = ∓(Ux ± iUy)/
√
2

1



and U0 = Uz. They have [Jz, T
(k)
q ] = h̄qT

(k)
q and [J±, T

(k)
q ] = h̄

√

(k ∓ q)(k ± q + 1)T
(k)
q±1,

i.e. T
(k)
q transform like |k, q〉.
• Wigner-Eckart theorem:

〈α′, j′m′|T (k)
q |α, jm〉 = (2j + 1)−1/2〈jk;mq|jk; j′m′〉〈α′j′||T (k)||αj〉.

The first term is a CG coefficient, which is zero unless m′ = q+m and |j−k| ≤ j′ ≤ j+k.

The last term is independent of m and m′; this is where the symmetry gives some helpful

mileage.

Example: for a scalar operator S get

〈α′, j′m′|T (k)
q |α, jm〉 = (2j + 1)−1/2δj′jδm′m〈α′j′||T (k)||αj〉.

For a vector operator ~V get j′ − j = 0,±1 and m′ − m = ±1, 0. Useful in perturbation

theory for radiation.
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