
11/23/16 Lecture 17 outline

• Last time: Coulomb potential: V = −Ze2/r, so ψE,ℓ,m = RE,ℓ(r)Yℓm(θφ) with

RE,ℓ ≡ uE,ℓ/r and the radial ODE (taking E = −|E| < 0) is

(− h̄2

2m

d2

dr2
+
h̄2ℓ(ℓ+ 1)

2mr2
− Ze2

r
+ |E|)u = 0.

Define ρ ≡ κr where h̄κ ≡
√

2m|E| and ρ0 ≡
√

2m/|E|(Ze2/h̄) and use α ≡ e2/h̄c ≈
1/137. Then uE,ℓ ≡ ρℓ+1e−ρw(ρ) solves the radial S.E. if w(ρ) satisfies an ODE. Again, the

ρ→ 0 behavior is determined by the angular momentum term in Veff , i.e. ℓ(ℓ+1)h̄2/2mr2.

Because V (r) → 0 for r → ∞, the leading behavior in that limit is what we would get for

a free particle with E < 0, which gives the e−ρ term; the Coulomb term corrects this with

power-law behavior for r → ∞, which is similar to the similar to the WKB correction at

order h̄. The solutions can be written in terms of hypergeometric functions. If we write

w(ρ) =
∑

aℓρ
ℓ, the recursion relation is

ak+1

ak
=

−ρ0 + 2(k + ℓ+ 1)

(k + ℓ+ 2)(k + ℓ+ 1)− ℓ(ℓ+ 1)

which has ak+1/ak → 2/k, consistent with e2ρ for large ρ for generic E. As usual for

bound state problems, we find that E has to be quantized or the solution would be badly

behaved for r → ∞, would get w(ρ) → eρ for generic E. To avoid this, the series for w(ρ)

must truncate at finite order N . This requires ρ0 = 2(N + ℓ+ 1). Note degeneracy.

Upshot: Find that the radial equation gives En = −1
2mc

2Z2α2/n2 where n = N+ℓ+1,

withN = 0, 1, 2 . . ., i.e. ℓ = 0, 1, . . . , n−1. The degeneracy for fixed n is
∑n−1

ℓ=0 (2ℓ+1) = n2.

Taking a0 ≡ h̄2/me2, (with F a Hypergometric function)

Rn,ℓ(r) ∝ rℓe−Zr/na0F (−n+ ℓ+ 1; 2ℓ+ 2; 2Zr/na0).

• The degeneracy of the Coulomb potential is related to a special symmetry associated

with V = −k/r. Classically it conserves the Runge-Lenz vector ~Ncl = ~p× ~L/m− k~x/r. In

QM we define

~N =
1

2m
(~p× ~L− ~L× ~p)− k~x

√

x2 + y2 + z2
.

which is conserved: [N,H] = 0. Since it is a vector, we can write Nℓ,m, with ℓ = 1

and m = 1, 0,−1. Can use it to change ℓ of the E eigenstates without changing E, so

degeneracy in ℓ. The way it changes ℓ is related to addition of angular momentum.

1



• The total angular momentum of a particle is ~J = ~L + ~S. This is a special case

of the topic of addition of angular momentum. The total angular momentum can come

from adding that of two systems, ~J = ~J1 + ~J2, with a system with |j1, m1〉 and another

with |j2, m2〉. For example, the two systems can be two electrons, and we want to find

their combined total spin. We tensor product together all the |j1, m1〉 ⊗ |j2, m2〉. Note

~J2 = ~J2
1 + ~J2

2 + 2 ~J1 · ~J2 = ~J2
1 + ~J2

2 + 2J1,zJ2,z + J1+J2− + J1−J2+. Find that the tensor

product has j that can run from j = |j1 − j2| to j = j1 + j2, differing by integer values,

and m = m1 +m2. The total dimension is indeed the product (2j1 + 1)(2j2 + 1), check.

• Example of combining two spin 1/2s.

• |j1j2;m1m2〉 ≡ |j1, m1〉 ⊗ |j2, m2〉. Also |j1j2; jm〉. Clebsch-Gordon coefficients

〈j1j2;m1m2|j1j2; jm〉. Using Jz = J1z + J2z, show m = m1 + m2. Recipe: start with

case j = j1 + j2, m = j1 + j2, where the only possibility is |j1j1〉 ⊗ |j2j2〉. Now use

J− = J1− + J2− to get all m values for j = j1 + j2. Now get j = m = j1 + j2 − 1 by

orthogonality:

|j1 + j2; j1 + j2 − 1〉 =
√

j1
j1 + j2

|j1, j1 − 1〉|j2j2〉+
√

j2
j1 + j2

|j1j1〉|j2j2 − 1〉,

|j1 + j2 − 1; j1 + j2 − 1〉 = −
√

j2
j1 + j2

|j1, j1 − 1〉|j2j2〉+
√

j1
j1 + j2

|j1j1〉|j2j2 − 1〉.

Now lower m to get all j = j1 + j2 − 1 cases. Now get j = mj1 + j2 − 2, by imposing

orthogonality with the known (from previous steps) vectors with j1 + j2 and j1 + j2 − 1

and m = j1 + j2 − 2. Keep going until done.

Ended here

• Example of combining spin 1 and spin 1/2. Clebsch Gordon coefficients.

• Consider the case j1 = ℓ an integer, and j2 = 1
2 . This is of use for Hydrogen etc

where the electron has both orbital and spin angular momentum. Get j = ℓ± 1
2
for ℓ > 0,

and j = 1
2 for ℓ = 0. Note that ~L · ~S = 1

2(
~J2 − ~L2 − ~S2) is (h̄2/2)(j(j+1)− ℓ(ℓ+1)− 3/4)

is ℓh̄2/2 for j = ℓ+ 1
2
and −(ℓ+ 1)h̄2/2 for j = ℓ− 1

2
.

• Atomic notation: 2S+1LJ , with L = 0, 1, 2, 3, . . . denoted by S, P,D, F, . . . e.g. 2P3/2

means ℓ = 1, s = 1/2, j = 3/2. The ground state of He is 1S0.

• Wigner-Eckart theorem. Let T
(k)
q be an operator with ℓ = k and m = q.

For example, T
(2)
0 = U+V − +2U0V0 + U−U+ where ~U and ~V are two vectors and

U± = ∓(Ux ± iUy)/
√
2 and U0 = Uz. They have [Jz, T

(k)
q ] = h̄qT

(k)
q and [J±, T

(k)
q ] =

h̄
√

(k ± q)(k ± q + 1)T
(k)
q±1, i.e. T

(k)
q transform like |k, q〉.
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The theorem says that

〈α′, j′m′|T (k)
q |α, jm〉 = (2j + 1)−1/2〈jk;mq|jk; j′m′〉〈α′j′||T (k)||αj〉.

The first term is a CG coefficient, which is zero unless m′ = q+m and |j−k| ≤ j′ ≤ j+k.

The last term is independent of m and m′; this is where the symmetry gives some helpful

mileage.
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