11/23/16 Lecture 17 outline

e Last time: Coulomb potential: V = —Ze?/r, so ¥ sm = Rg.e(r)Yem(0¢) with
Rg ¢ = ug/r and the radial ODE (taking F' = —|E| < 0) is
R d?2 R +1)  Ze?

€
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Define p = kr where hx = /2m|E| and pg = /2m/|E[(Ze?/h) and use a = €%/hc ~
1/137. Then ug = p*Tle=Pw(p) solves the radial S.E. if w(p) satisfies an ODE. Again, the
p — 0 behavior is determined by the angular momentum term in V. s, i.e. £(£+1)h*/2mr2.
Because V(r) — 0 for r — oo, the leading behavior in that limit is what we would get for
a free particle with E < 0, which gives the e™” term; the Coulomb term corrects this with
power-law behavior for r — oo, which is similar to the similar to the WKB correction at
order h. The solutions can be written in terms of hypergeometric functions. If we write

w(p) =" agp’, the recursion relation is

k41 —po+2(k+L+1)

an  k+l+2)(k+l+1) —((+1)

which has agy1/ar — 2/k, consistent with e/ for large p for generic E. As usual for
bound state problems, we find that F has to be quantized or the solution would be badly
behaved for r — oo, would get w(p) — e” for generic E. To avoid this, the series for w(p)
must truncate at finite order N. This requires pg = 2(IN 4+ £ 4+ 1). Note degeneracy.

Upshot: Find that the radial equation gives E,, = —%mc2 Z%a? /n? wheren = N+/£+1,
with N =0,1,2...,i.e. £=0,1,...,n—1. The degeneracy for fixed n is Z?:_Ol(%-l-l) =n2.
Taking ag = h*/me?, (with F' a Hypergometric function)

Rpo(r) ocrte ™ 2T/m0 f(—n 4 0+ 1; 20 + 2;: 2Zr /nay).

e The degeneracy of the Coulomb potential is related to a special symmetry associated
with V = —k/r. Classically it conserves the Runge-Lenz vector Ny = p'x L/m — ki/r. In
QM we define

N=—(FxL-Lxp)— x .
2m / 2 + y2 + 22
which is conserved: [N, H] = 0. Since it is a vector, we can write Ny,,, with £ = 1

and m = 1,0,—1. Can use it to change ¢ of the E eigenstates without changing FE, so

degeneracy in £. The way it changes ¢ is related to addition of angular momentum.
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e The total angular momentum of a particle is J=L+§S. This is a special case
of the topic of addition of angular momentum. The total angular momentum can come
from adding that of two systems, J=J + fg, with a system with |j;,m;) and another
with |ja, mo). For example, the two systems can be two electrons, and we want to find
their combined total spin. We tensor product together all the [ji,m1) ® |j2, m2). Note
J? = jlz + f§ 2Ty - Ty = J? + f§ +2J1.J2, + Ji4Jo— + Ji—Joq. Find that the tensor
product has j that can run from j = |j; — ja| to j = j1 + jo, differing by integer values,
and m = my + mso. The total dimension is indeed the product (2j; + 1)(2j2 + 1), check.

e Example of combining two spin 1/2s.

o |jij2;mime) = |j1,m1) ®@ |j2,m2). Also |j1j2;jm). Clebsch-Gordon coefficients
(j1j2; mima|j1je; jm). Using J, = Jy, + J2., show m = my + my. Recipe: start with
case j = j1 + j2, m = j1 + jo, where the only possibility is [j171) ® |j2j2). Now use
J_ = Ji_ + Jo— to get all m values for j = j; + jo. Now get j = m = j1 +j2 — 1 by

orthogonality:
1+ joidi 4 jo — 1) = \/h”jh 1,1 — 1)ljada) + ‘/jlsz 1) dada — 1),
o o Joo . TR
lj1 + J2 J1+72—1) P 71, 71 — 1)|7272) P lj1j1) 272 — 1)

Now lower m to get all 7 = j; + jo — 1 cases. Now get j = mj; + jo — 2, by imposing
orthogonality with the known (from previous steps) vectors with j; + jo and j; + jo — 1
and m = j1 + j2 — 2. Keep going until done.

Ended here

e Example of combining spin 1 and spin 1/2. Clebsch Gordon coefficients.

e Consider the case j; = ¢ an integer, and jo = % This is of use for Hydrogen etc
where the electron has both orbital and spin angular momentum. Get j = ¢+ % for £ > 0,
and j = 3 for £ = 0. Note that L-S = L(J? — L? — §%) is (h*/2)(j(j + 1) — £(L+1) — 3/4)
is ¢h? /2 for j = £ + + and — (0 + Dh?/2 for j =1 — 3.

e Atomic notation: 1L, with L = 0,1,2,3,... denoted by S, P, D, F, ...e.g. 2Py,
means £ =1, s = 1/2, j = 3/2. The ground state of He is }Sj.

e Wigner-Eckart theorem. Let T, q(k) be an operator with / = k£ and m = q.
For example, To(z) = ULV — +2U00Vy + U_U; where U and V are two vectors and
U+ = F(U, £1iU,)/v2 and Uy = U,. They have [Jz,Tq(k)] = thq(k) and [Ji,Ték)] =

hy/(k+q)(k+q+ l)Tq(:kt)l, ie. Tq(k) transform like |k, ¢).
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The theorem says that
(5w | TP e, jm) = (25 + 1)V (ks maljk; 'm/) (/5| T®) ||oj).

The first term is a CG coefficient, which is zero unless m’ = g+m and |j — k| < j' < j+k.
The last term is independent of m and m/; this is where the symmetry gives some helpful

mileage.



