
11/21/16 Lecture 16 outline

• Aside: Yℓ,m(θ, φ) asides: Yℓ,ℓ = cℓe
iℓφ sinℓ θ, Yℓ,0 =

√
2ℓ+1

4π
Pℓ(cos θ),

Yℓ,m = cℓ,me
imφ(sin θ)−m dℓ−m

d(cos θ)ℓ+m
(sin θ)2ℓ.

In rectangular coordinates, the Yℓm are given by appropriate Fℓ(x, y, z)/r
ℓ which we can

understand in terms of addition of angular momentum. E.g. r2 = x2 + y2 + z2 has

ℓ = m = 0 whereas Qij = (xixj− 1

3
r2)/r2 has ℓ = 2, with the five independent components

corresponding to m = 2, 1, 0,−1,−2. This is referred to as an ℓ = 2 tensor. Likewise can

consider Qi1,...iℓ by symmetrizing and subtracting the traces.

• Last time: spherically symmetric V (r) means that [H,La] = 0, so we can find

simultaneous eigenstates |E, ℓ,m〉. Writing ~p2 → p2r + L2/r2, we find that ~x|Eℓm〉 =

RE,ℓ(r)Yℓ,m(θ, φ), where RE,ℓ satisfies the radial SE

(
− h̄2

2mr2
d

dr
(r2

d

dr
) +

ℓ(ℓ+ 1)h̄2

2mr2
+ V (r)

)
RE,ℓ(r) = ERE,ℓ(r).

It looks a little nicer for uE,ℓ(r) ≡ rRE,ℓ(r):

− h̄2

2m

d2u

dr2
+ Veff (r)u = Eu, Veff = V (r) +

ℓ(ℓ+ 1)h̄2

2mr2
.

If we assume that r2V (r) → 0 for r → 0, then the angular momentum barrier wins and

the SE implies u(r) → Arℓ+1 + Br−ℓ in this limit, and the condition that jr = r̂ · ~j =
h̄
mIm(ψ∗∂rψ) → 0 for r → 0 excludes the second term, so RE,ℓ → rℓ for r → 0. So

wavefunction vanishes at origin except for ℓ = 0; this is the angular momentum barrier.

• Free particle in spherical coordinates: ψE,ℓ,m = RE,ℓ(r)Yℓ,m(θφ) has R = u/r with

(
d2

dr2
+ k2 − ℓ(ℓ+ 1)

r2
)u = 0, h̄k =

√
2mE.

Function of ρ = kr. Solutions of the ODE in ρ are the spherical Bessel functions

jℓ = (−ρ)ℓ( 1
ρ

d

dρ
)ℓ(

sin ρ

ρ
).

(Replacing sin ρ− → − cos ρ gives the spherical Neumann functions nℓ(ρ) which also solve

the ODE but have nℓ ∼ ρ−ℓ−1 for ρ → 0 which is badly behaved and thus thrown away.

As expected, here k and E are continuous. The solutions are delta-function normalizable:
∫

∞

0

jℓ(kr)jℓ′(k
′r)r2dr =

π

2k2
δ(k − k′)δℓℓ′ .
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• Particle in a spherical well of radius a: need to impose jℓ(ka) = 0, leads to quantized

k → kℓ,n e.g. k0,n = nπ, and thus En,ℓ. No degeneracy in ℓ.

• SHO: r ≡
√
h̄/mωρ, u = ρℓ+1e−ρ2/2f(ρ) gives an eqn for f(ρ) ≡ ∑

∞

n=0
anρ

n with

recursion relation

an+2 =
2n+ 2ℓ+ 3− 2E/h̄ω

(n+ 2)(n+ 2ℓ+ 3)
an.

For n → ∞ this recursion relation gives f ∼ eρ
2

, which would lead to a non-normalizable

ψ, so there has to be some n = q where it truncates, i.e. an>q = 0. This leads to

E = (2q+ℓ+ 3

2
)h̄ω, where q = 0, 1, 2, . . . is the number of nodes in the radial wavefunction.

Compare to rectangular coordinates and 3 decoupled SHOs, where we get E = (N+ 3

2
)h̄ω,

get N = n1 + n2 + n3 = 2q + ℓ. Note degeneracy with different ℓ having same E.

• Coulomb potential: V = −Ze2/r. Usual to write in terms of α = e2/h̄c ≈ 1/137.

Coulomb potential: define ρ ≡ κr where h̄κ ≡
√
2m|E| and ρ0 ≡

√
2m/|E|(Ze2/h̄) and

use α ≡ e2/h̄c ≈ 1/137. Then uE,ℓ ≡ ρℓ+1e−ρw(ρ) solves the radial S.E. if w(ρ) satisfies

an ODE. The solutions can be written in terms of hypergeometric functions. As usual for

bound state problems, we find that E has to be quantized or the solution would be badly

behaved for r → ∞, would get w(ρ) → eρ for generic E. To avoid this, the series for w(ρ)

must truncate at finite order N . This requires ρ0 = 2(N + ℓ+ 1). Note degeneracy.

Upshot: Find that the radial equation gives En = −1

2
mc2Z2α2/n2 where n = N+ℓ+1,

withN = 0, 1, 2 . . ., i.e. ℓ = 0, 1, . . . , n−1. The degeneracy for fixed n is
∑n−1

ℓ=0
(2ℓ+1) = n2.

Taking a0 ≡ h̄2/me2, (with F a Hypergometric function)

Rn,ℓ(r) ∝ rℓe−Zr/na0F (−n+ ℓ+ 1; 2ℓ+ 2; 2Zr/na0).
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