11/21/16 Lecture 16 outline

• Aside: $Y_{\ell,m}(\theta,\phi)$ asides: $Y_{\ell,\ell} = c_{\ell}e^{i\ell\phi}\sin^{\ell}\theta$, $Y_{\ell,0} = \sqrt{\frac{2\ell+1}{4\pi}}$ $rac{\ell+1}{4\pi}P_{\ell}(\cos\theta),$

$$
Y_{\ell,m} = c_{\ell,m} e^{im\phi} (\sin \theta)^{-m} \frac{d^{\ell-m}}{d(\cos \theta)^{\ell+m}} (\sin \theta)^{2\ell}.
$$

In rectangular coordinates, the $Y_{\ell m}$ are given by appropriate $F_{\ell}(x, y, z)/r^{\ell}$ which we can understand in terms of addition of angular momentum. E.g. $r^2 = x^2 + y^2 + z^2$ has $\ell = m = 0$ whereas $Q_{ij} = (x_i x_j - \frac{1}{3})$ $\frac{1}{3}r^2$ / r^2 has $\ell = 2$, with the five independent components corresponding to $m = 2, 1, 0, -1, -2$. This is referred to as an $\ell = 2$ tensor. Likewise can consider $Q_{i_1,...i_\ell}$ by symmetrizing and subtracting the traces.

• Last time: spherically symmetric $V(r)$ means that $[H, L_a] = 0$, so we can find simultaneous eigenstates $|E, \ell, m\rangle$. Writing $\bar{p}^2 \to p_r^2 + L^2/r^2$, we find that $\vec{x}|E\ell m\rangle =$ $R_{E,\ell}(r)Y_{\ell,m}(\theta,\phi),$ where $R_{E,\ell}$ satisfies the radial SE

$$
\left(-\frac{\hbar^2}{2mr^2}\frac{d}{dr}(r^2\frac{d}{dr}) + \frac{\ell(\ell+1)\hbar^2}{2mr^2} + V(r)\right)R_{E,\ell}(r) = ER_{E,\ell}(r).
$$

It looks a little nicer for $u_{E,\ell}(r) \equiv r R_{E,\ell}(r)$:

$$
-\frac{\hbar^2}{2m}\frac{d^2u}{dr^2} + V_{eff}(r)u = Eu, \qquad V_{eff} = V(r) + \frac{\ell(\ell+1)\hbar^2}{2mr^2}
$$

.

If we assume that $r^2V(r) \to 0$ for $r \to 0$, then the angular momentum barrier wins and the SE implies $u(r) \to Ar^{\ell+1} + Br^{-\ell}$ in this limit, and the condition that $j_r = \hat{r} \cdot \vec{j} =$ $\frac{\hbar}{m}Im(\psi^*\partial_r\psi) \to 0$ for $r \to 0$ excludes the second term, so $R_{E,\ell} \to r^{\ell}$ for $r \to 0$. So wavefunction vanishes at origin except for $\ell = 0$; this is the angular momentum barrier.

• Free particle in spherical coordinates: $\psi_{E,\ell,m} = R_{E,\ell}(r) Y_{\ell,m}(\theta \phi)$ has $R = u/r$ with

$$
(\frac{d^2}{dr^2} + k^2 - \frac{\ell(\ell+1)}{r^2})u = 0, \quad \hbar k = \sqrt{2mE}.
$$

Function of $\rho = kr$. Solutions of the ODE in ρ are the spherical Bessel functions

$$
j_{\ell} = (-\rho)^{\ell} \left(\frac{1}{\rho} \frac{d}{d\rho}\right)^{\ell} \left(\frac{\sin \rho}{\rho}\right).
$$

(Replacing $\sin \rho \rightarrow -\cos \rho$ gives the spherical Neumann functions $n_{\ell}(\rho)$ which also solve the ODE but have $n_{\ell} \sim \rho^{-\ell-1}$ for $\rho \to 0$ which is badly behaved and thus thrown away. As expected, here k and E are continuous. The solutions are delta-function normalizable:

$$
\int_0^\infty j_\ell(kr) j_{\ell'}(k'r) r^2 dr = \frac{\pi}{2k^2} \delta(k - k') \delta_{\ell\ell'}.
$$

• Particle in a spherical well of radius a: need to impose $j_{\ell}(ka) = 0$, leads to quantized $k \to k_{\ell,n}$ e.g. $k_{0,n} = n\pi$, and thus $E_{n,\ell}$. No degeneracy in ℓ .

• SHO: $r \equiv \sqrt{\hbar/m\omega \rho}$, $u = \rho^{\ell+1} e^{-\rho^2/2} f(\rho)$ gives an eqn for $f(\rho) \equiv \sum_{n=0}^{\infty} a_n \rho^n$ with recursion relation

$$
a_{n+2} = \frac{2n + 2\ell + 3 - 2E/\hbar\omega}{(n+2)(n+2\ell+3)}a_n.
$$

For $n \to \infty$ this recursion relation gives $f \sim e^{\rho^2}$, which would lead to a non-normalizable ψ , so there has to be some $n = q$ where it truncates, i.e. $a_{n>q} = 0$. This leads to $E = (2q + \ell + \frac{3}{2})$ $\frac{3}{2}$) $\hbar\omega$, where $q = 0, 1, 2, \ldots$ is the number of nodes in the radial wavefunction. Compare to rectangular coordinates and 3 decoupled SHOs, where we get $E = (N + \frac{3}{2})$ $\frac{3}{2}$) $\hbar\omega,$ get $N = n_1 + n_2 + n_3 = 2q + \ell$. Note degeneracy with different ℓ having same E.

• Coulomb potential: $V = -Ze^2/r$. Usual to write in terms of $\alpha = e^2/\hbar c \approx 1/137$. Coulomb potential: define $\rho \equiv \kappa r$ where $\hbar \kappa \equiv \sqrt{2m|E|}$ and $\rho_0 \equiv \sqrt{2m/|E|} (Ze^2/\hbar)$ and use $\alpha \equiv e^2/\hbar c \approx 1/137$. Then $u_{E,\ell} \equiv \rho^{\ell+1} e^{-\rho} w(\rho)$ solves the radial S.E. if $w(\rho)$ satisfies an ODE. The solutions can be written in terms of hypergeometric functions. As usual for bound state problems, we find that E has to be quantized or the solution would be badly behaved for $r \to \infty$, would get $w(\rho) \to e^{\rho}$ for generic E. To avoid this, the series for $w(\rho)$ must truncate at finite order N. This requires $\rho_0 = 2(N + \ell + 1)$. Note degeneracy.

Upshot: Find that the radial equation gives $E_n = -\frac{1}{2}mc^2Z^2\alpha^2/n^2$ where $n = N + \ell + 1$, with $N = 0, 1, 2, \ldots$, i.e. $\ell = 0, 1, \ldots, n-1$. The degeneracy for fixed n is $\sum_{\ell=0}^{n-1} (2\ell+1) = n^2$. Taking $a_0 \equiv \hbar^2 /me^2$, (with F a Hypergometric function)

$$
R_{n,\ell}(r) \propto r^{\ell} e^{-Zr/na_0} F(-n+\ell+1; 2\ell+2; 2Zr/na_0).
$$