11/21/16 Lecture 16 outline

o Aside: Y., (0, ¢) asides: Y, = coe® sin g, Yoo= %Pg(cos 9),
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(sin 0)2".

In rectangular coordinates, the Yy, are given by appropriate Fy(z,y, z)/r* which we can
understand in terms of addition of angular momentum. E.g. r? = 22 4+ y? + 22 has
¢ =m = 0 whereas Q;; = (v;x; — %7‘2>/7‘2 has ¢ = 2, with the five independent components
corresponding to m = 2,1,0, —1, —2. This is referred to as an £ = 2 tensor. Likewise can
consider @);, .., by symmetrizing and subtracting the traces.

e Last time: spherically symmetric V(r) means that [H,L,] = 0, so we can find
simultaneous eigenstates |E, ¢, m). Writing p?* — p? + L?/r?, we find that Z|Efm) =
R o(r)Yem(0, ¢), where R satisfies the radial SE
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+ V(T)) RE7g(T> = ERE75(7°).

It looks a little nicer for ug ¢(r) = rRg ¢(r):

h? d? 0(+ 1)R?
By = Bu, Vg = V() + L

2m dr? 2mr?2

If we assume that r2V(r) — 0 for r — 0, then the angular momentum barrier wins and
the SE implies u(r) — Arf*' + Br~¢ in this limit, and the condition that j, = 7-j =
%Im(d;*&n@b) — 0 for 7 — 0 excludes the second term, so Rg, — r‘ for 7 — 0. So
wavefunction vanishes at origin except for £ = 0; this is the angular momentum barrier.

e Iree particle in spherical coordinates: ¥g ¢m = Rpgo(r)Ye,m(0¢) has R = u/r with

> 0 +1
(W—i—kQ—%)u:O, hk = V2mE.

Function of p = kr. Solutions of the ODE in p are the spherical Bessel functions
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(Replacing sin p— — — cos p gives the spherical Neumann functions ny(p) which also solve
the ODE but have ny ~ p~*~! for p — 0 which is badly behaved and thus thrown away.
As expected, here k and E are continuous. The solutions are delta-function normalizable:
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e Particle in a spherical well of radius a: need to impose jy(ka) = 0, leads to quantized
k — kon eg. kon=nm, and thus F, . No degeneracy in /.
e SHO: r = /h/mwp, u = p'+tle="/2f(p) gives an eqn for f(p) = oo g anp™ with

recursion relation
2n+20+4+3—-2E/hw

(n+2)(n+20+3)

Ap42 = n-

For n — oo this recursion relation gives f ~ ep2, which would lead to a non-normalizable
1, so there has to be some n = ¢ where it truncates, i.e. ap>, = 0. This leads to
E = (2q+¢+ %)hw, where ¢ = 0,1, 2, ... is the number of nodes in the radial wavefunction.
Compare to rectangular coordinates and 3 decoupled SHOs, where we get £ = (N + %)hw,
get N = nq +ng + ng = 2q + £. Note degeneracy with different ¢ having same FE.

e Coulomb potential: V = —Ze?/r. Usual to write in terms of a = e?/hc ~ 1/137.
Coulomb potential: define p = xr where hik = \/2m|E| and py = \/2m/|E|(Ze?/h) and
use o = €2/hc ~ 1/137. Then ug, = p*Tle Pw(p) solves the radial S.E. if w(p) satisfies
an ODE. The solutions can be written in terms of hypergeometric functions. As usual for
bound state problems, we find that F has to be quantized or the solution would be badly
behaved for r — oo, would get w(p) — e” for generic E. To avoid this, the series for w(p)
must truncate at finite order N. This requires pg = 2(IN 4+ ¢ 4+ 1). Note degeneracy.

Upshot: Find that the radial equation gives E,, = —%mc2 Z%0? /n? wheren = N+/0+1,
with N =0,1,2...,i.e. £=0,1,...,n—1. The degeneracy for fixed n is Z?:_Ol (20+1) = n2.
Taking ag = h*/me?, (with F' a Hypergometric function)

Rpo(r) ocrte ™ 2/m0 (—n 4 0+ 1;20 + 2;: 2Zr /nay).



