11/16/16 Lecture 15 outline

• Last time: $U = e^{-i\vec{\alpha} \cdot \vec{J}/\hbar}$ a unitary operator, in representation of the group $SU(2)$. The group multiplication law is ensured by

$$
[J_a, J_b] = i\hbar \epsilon_{abc} J_c.
$$

We can find simultaneous eigenstates of J_z and \vec{J}^2 , since $[\vec{J}^2, J_a] = 0$: write $|a, b\rangle$ as an eigenstate of \vec{J}^2 and J_z with eigenvalues a, b. In such an eigenstate, it follows from the above commutator that J_x and J_y will have some uncertainty if $b \neq 0$. Define $J_{\pm} \equiv (J_z \pm iJ_y)$, which satisfy $[J_z, J_{\pm}] = \pm \hbar J_{\pm}$ and $[J_+, J_-] = 2\hbar J_z$. Write these out explicitly for $\vec{J} \rightarrow$ 1 $\frac{1}{2}\hbar\vec{\sigma}$. If $|a, b\rangle$ is an eigenstate of \vec{J}^2 and J_z with eigenvalues a, b , then $J_{\pm}|a, b\rangle = c_{\pm}|a, b \pm \hbar\rangle$. The proportionality constant c_{\pm} will be determined from $J_{\mp}J_{\pm} = \vec{J}^2 - J_z^2 \mp \hbar J_z$. Note first that $\vec{J}^2 - J_z^2 = \frac{1}{2}$ $\frac{1}{2}(J_{+}J_{+}^{\dagger}+JJ_{+}^{\dagger}J_{+})$ must have non-negative expectation values in any state, and therefore $a \geq b^2$. So we can't raise and lower b beyond \sqrt{a} ; there is a b_{min} and a b_{max} , with $J_{-}|a, b_{min}\rangle = 0$ and $J_{+}|a, b_{max}\rangle = 0$. Obtain $a = b_{max}(b_{max} + \hbar) = b_{min}(b_{min} - \hbar)$, so $b_{min} = -b_{max}$. Finally, can raise / lower one to the other, so $b_{max} - b_{min} = 2b_{max} = n\hbar$ for some integer *n*. There are then $n + 1$ values of *b*; e.g. for $\vec{J} \rightarrow \frac{1}{2} \hbar \vec{\sigma}$ we have $n = 1$ and this is a 2d representation. Write $j = n/2$ and then $a = \hbar^2 j(j + 1)$, and $b = m\hbar$ with $m = -j, -j + 1, \ldots, j.$

Considering matrix elements in $|jm\rangle$ states, which are orthonormal,

$$
J_{\pm}|j,m\rangle = \sqrt{(j \mp m)(j \pm m + 1)}\hbar|j,m \pm 1\rangle.
$$

• The rotation group elements are, in the j representation, given by $(2j+1) \times (2j+1)$ matrices:

$$
\mathcal{D}_{m'm}^{(j)} = \langle j, m' | \exp(-i\vec{J} \cdot \vec{\phi}/\hbar) | j, m \rangle.
$$

• Orbital angular momentum is a special case, where ℓ must be integral. Writing $\vec{L} = \vec{x} \times \vec{p}$ and going to $|\vec{x}\rangle$ basis, the \vec{L} are angular derivatives: $L_z \rightarrow -i\hbar\partial_{\phi}$, $L_{\pm} \rightarrow$ $-i\hbar e^{\pm i\phi}(\pm i\partial_{\theta}-\cot\theta\partial_{\phi})$. And \vec{L}^2 is related to the angular part of the Laplacian in spherical coordinates. This is the same as how, in classical mechanics, we replace $\bar{p}^2 \to p_r^2 + \bar{L}^2/r^2$. $\langle \vec{x} | L^2 | \psi \rangle = -\hbar^2 \left(\frac{1}{\sin^2 \theta} \partial_{\phi}^2 + \frac{1}{\sin^2 \theta} \partial_{\phi}^2 \right)$ $\frac{1}{\sin \theta} \partial_{\theta} (\sin \theta \partial_{\theta})) \psi(\vec{x}).$

The spherical harmonics are $Y_{\ell}^{m}(\theta,\phi) = \langle \theta \phi | \ell,m \rangle$. E.g. their orthonormality conditions are obtained by $\delta_{\ell\ell'}\delta_{mm'} = \langle \ell'm'|\ell m \rangle = \int d\Omega \langle \ell'm'|\theta\phi\rangle \langle \theta\phi|\ell m \rangle$, where $d\Omega =$ $d\phi d(\cos\theta)$ is the solid angle element.

• Spherically symmetric $V(r)$ means that $[H, L_a] = 0$, so we can find simultaneous eigenstates $|E, \ell, m\rangle$. Writing $\bar{p}^2 \to p_r^2 + L^2/r^2$, we find that $\vec{x}|E\ell m\rangle = R_{E,\ell}(r)Y_{\ell,m}(\theta, \phi)$, where $R_{E,\ell}$ satisfies the radial SE

$$
\left(-\frac{\hbar^2}{2mr^2}\frac{d}{dr}(r^2\frac{d}{dr}) + \frac{\ell(\ell+1)\hbar^2}{2mr^2} + V(r)\right)R_{E,\ell}(r) = ER_{E,\ell}(r).
$$

It looks a little nicer for $u_{E,\ell}(r) \equiv r R_{E,\ell}(r)$:

$$
-\frac{\hbar^2}{2m}\frac{d^2u}{dr^2} + V_{eff}(r)u = Eu, \qquad V_{eff} = V(r) + \frac{\ell(\ell+1)\hbar^2}{2mr^2}
$$

.

If we assume that $r^2V(r) \to 0$ for $r \to 0$, then the angular momentum barrier wins and the SE implies $u(r) \to Ar^{\ell+1} + Br^{-\ell}$ in this limit, and the condition that $j_r = \hat{r} \cdot \vec{j} =$ $\frac{\hbar}{m}Im(\psi^*\partial_r\psi) \to 0$ for $r \to 0$ excludes the second term, so $R_{E,\ell} \to r^{\ell}$ for $r \to 0$. So wavefunction vanishes at origin except for $\ell = 0$; this is the angular momentum barrier.