
11/9/16 Lecture 13 outline

• Last time: propagator: K(~x2, t2; ~x1, t1) ≡ 〈~x2|U(t2, t1)|~x1〉. E.g. for free particle:

Kfree =

∫
d3p

(2π)3h̄
exp[i(~p · (~x2 − ~x1)− ~p2(t2 − t1)/2m)/h̄] =

=

(
m

2πih̄(t2 − t1)

)3/2

exp[im(~x2 − ~x1)
2/2h̄(t2 − t1)].

For the 1d SHO get

KSHO =
∑

n

un(x2)u
∗

n(x1)e
−iEn(t2−t1)/h̄ =

√
mω

2πih̄ sin(ω(t2 − t1))
exp[imω

(
(x22 + x21) cosω(t2 − t1)− 2x2x1

)
/2h̄ sin(ω(t2 − t1))].

These look a bit disgusting but are actually nice: the exponentials are the expected Hamil-

ton functions from classical mechanics, fitting with our discussion before. The fact that

they are precisely the classical result, without additional quantum corrections, is special

to cases where every term in the Hamiltonian is at most quadratic. In terms of the path

integral, the WKB approximation is related to a saddle point approximation of integrals,

and the integrals reduce to Gaussians for the case of quadratic actions, and the saddle

point approximation in such special cases happens to be exact.

E.g. for a free particle we can evaluate S[xcl, ẋcl] =
∫ t2,x2

t1,x1

dt 1
2
m~̇x

2
= 1

2
m(~x2 −

~x1)
2/(t2 − t1). For a SHO, S[xcl, ẋcl] =

∫
dt( 12A

2mω2)(sin2(ωt+ φ) − cos2(ωt+ φ)) = . . .

where we eliminate A and φ in terms of (x1, t1) and (x2, t2). Some interesting general

properties of Scl:
∂Scl

∂t2
= −E, ∂Scl

∂~x2
= ~p.

We will use these soon.

• Note that it follows from the above definition that

K(~x3, t3; ~x1, t1) =

∫
d3~x2K(~x3, t3; ~x2, t2)K(~x2, t2; ~x1, t1),

ψ(~x2, t2) =

∫
d3~x1K(~x2, t2; ~x1, t1)ψ(~x1, t1).

The Kernal K depends on the theory, but not the initial state condition. The wavefunction

ψ(x, t) depends on the initial state.

1



• Can show that K is a Green’s function for the S.E.

(−h̄2
2m

∂2~x2
+ V (~x2)− ih̄∂t2

)
K(~x2, t2; ~x1, t1) = −ih̄δ3(~x2 − ~x1)δ(t2 − t1),

K(~x2, t; ~x1, t) = δ3(~x2 − ~x1)δ(t2 − t1), K(~x2, t2; ~x1, t1) ≡ 0 if t2 < t1.

• Also

G(t) ≡
∫
d3~xK(~x, t; ~x, 0) =

∑

E

e−iEt/h̄.

Taking β = it/h̄ this is like the partition function. Also, Fourier transform

G̃(E) = −i
∫

∞

0

G(t)eiEt/h̄/h̄ = −i
∫

∞

0

dt
∑

Ea

ei(E−Ea)t/h̄/h̄ =
∑

Ea

1

E −Ea
.

• Feynman:

K(~x2, t2; ~x1, t1) =

∫
[d~x(t)]eiS[~x(t)]/h̄,

• Free particle example, take x0 ≡ xi and xN+1 ≡ xf .

K(xf , tf ; xi, ti) =

(−im
2πh̄ǫ

)N/2 ∫ N∏

i=1

dxi exp[
im

2h̄ǫ

N+1∑

i=1

(xi − xi−1)
2]

Where we take ǫ → 0 and N → ∞, with Nǫ = T held fixed. Do integral in steps. Apply

expression for real gaussian integral (valid: analytic continuation):

∫
∞

−∞

dφ exp(iaφ2) =

√
iπ

a
.

where we analytically continued from the case of an ordinary gaussian integral. Think of

a as being complex. Then the integral converges for Im(a) > 0, since then it’s damped.

More generally, use Gaussian integrals:

Z(Ji) ≡
N∏

i=1

∫
dφi exp(−Aijφiφi +Biφi) = πN/2(detA)−1/2 exp(A−1

ij BiBj/4).

After integrating over x1, x2, . . ., xn−1, get:

(
2πih̄nǫ

m

)
−1/2

exp[
m

2πih̄nǫ
(xn − x0)

2].
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So by induction the final answer for the free particle case is

K(xf , tf ; xi; ti) =

(
2πih̄T

m

)
−1/2

exp[im(xb − xa)
2/2h̄T ].

which agrees with the answer that we obtained (via just one dp Gaussian integral in the

usual formulation of QM).

We can check that it satisfies the S.E. Note that

lim
T→0

√
m

2πih̄T
eimx2/2h̄T = δ(x).

• Comment on x2 and t2 dependence and connection with ψ ∼ ei(px−Et)/h̄ for free

particle example: fits with ∂Scl/∂t2 = −E and ∂Scl/∂x2 = p.

• Derivation of PI from the S.E.: 〈~x2, t2|U(t2, t1)|~x1, t1〉 can be evaluated from U ∼
e−iHT/h̄ by breaking up the T = (t2− t1) interval as T = Nδt, taking N → ∞ and δt→ 0.

In each interval we insert a complete set of both ~x and ~p projectors, and use 〈~x|~p〉 ∼ ei~p·~x/h̄:

〈~x+ d~x, t+ dt|e−iĤdt/h̄|~x, t〉 =
∫

d3~p

(2πh̄)3
〈~x+ d~x, t+ dt|e−iĤdt/h̄|~p〉〈~p|~x, t〉

=

∫
d3~p

(2πh̄)3
ei(−Hdt+~p·d~x)/h̄ ∝ eiLdt/h̄,

where in the last step we did the Gaussian momentum integral by analytic continuation and

completing the square; in the end, this gives the Legendre transformation:
∫
(~p·~̇x−H)dt→

∫
Ldt. Note that the path integral does not involve operators, they have been replaced by

the integrals over complete sets of eigenstates and eigenvalues.

• Derivation of the SE from the path integral:

ψ(x, t+ ǫ) =

∫
dyK(x, t+ ǫ; x′, t)ψ(x′, t)dx′

≈
∫
dηA exp(ih̄−1[ 1

2
mη2ǫ−1 − ǫV ( 1

2
(x+ η))])ψ(x+ η, t)

where η ≡ x′ − x and A is a normalization factor, that can be determined by considering

the ǫ → 0 limit; this gives A = (2πih̄ǫ/m), as found above. For ǫ → 0, the oscillating

exponential gives zero unless the exponent ∼ η2/ǫ is within one phase oscillation, so η is

also small. If we take η small and expand both sides in small ǫ, we get the SE for ψ(x, t)

from

ψ(x, t) + ǫ
∂ψ

∂t
≈ A

∫
dηeimη2/2h̄ǫ(1− iǫ

h̄
V (x, t))(ψ + η∂xψ + 1

2η
2∂2xψ).

3



• Recall WKB: in the different regions,

ψ(x, t) ≈ ψ(x0)

√
p(x0)

p(x)
exp(± i

h̄

∫ x

x0

p(x′)dx′).

The exponent is essentially iScl/h̄, which is the saddle point approximation toK(x, t; x0, t0)

as computed from the path integral. The 1/
√
p comes from doing the Gaussian integral

for quadratic deviations in the Taylor series expansion around the extremal value.
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