
11/7/16 Lecture 12 outline

• Recall propagator: K(x2, t2; x1, t1) ≡ 〈x2|U(t2, t1)|x1〉. Evaluate by inserting com-

plete set of energy eigenstates. E.g. for free particle:

Kfree =

∫

dp

2πh̄
exp[i(p(x2 − x1)− p2(t2 − t1)/2m)/h̄] =

=

√

m

2πih̄(t2 − t1)
exp[im(x2 − x1)

2/2h̄(t2 − t1)].

For the SHO get

KSHO =
∑

n

un(x2)u
∗

n(x1)e
−iEn(t2−t1)/h̄ =

√

mω

2πih̄ sin(ω(t2 − t1))
exp[imω

(

(x22 + x21) cosω(t2 − t1)− 2x2x1
)

/2h̄ sin(ω(t2 − t1))].

These look a bit disgusting but are actually nice: the exponentials are the expected Hamil-

ton functions from classical mechanics, fitting with our discussion before. The fact that

they are precisely the classical result, without additional quantum corrections, is special

to cases where every term in the Hamiltonian is at most quadratic. In terms of the path

integral, the WKB approximation is related to a saddle point approximation of integrals,

and the integrals reduce to Gaussians for the case of quadratic actions, and the saddle

point approximation in such special cases happens to be exact.

E.g. for a free particle we can evaluate S[xcl, ẋcl] =
∫ t2,x2

t1,x1

dt 12mẋ
2 = 1

2m(x2 −

x1)
2/(t2 − t1). For a SHO, S[xcl, ẋcl] =

∫

dt( 12A
2mω2)(sin2(ωt+ φ) − cos2(ωt+ φ)) = . . .

where we eliminate A and φ in terms of (x1, t1) and (x2, t2). Some interesting general

properties of Scl:
∂Scl

∂t2
= −E,

∂Scl

∂x2
= p.

We will use these soon.

• Note that it follows from the above definition that

K(x3, t3; x1, t1) =

∫

dx2K(x3, t3; x2, t2)K(x2, t2; x1, t1),

ψ(x2, t2) =

∫

dx1K(x2, t2; x1, t1)ψ(x1, t1).

The Kernal K depends on the theory, but not the initial state condition. The wavefunction

ψ(x, t) depends on the initial state.
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• Dirac commented that ψ ∼ eiS/h̄ where S is the action. Feynman then showed how

to get a very interesting formulation of QM using the propagator. Get

K(x2, t2; x1, t1) =

∫

[dx(t)]eiS[x(t)]/h̄,

where the integral is over all paths that start at (x1, t1) and end at (x2, t2). Conceptually

it is very interesting. Picture of interference through a double slit, multiple slits, and

extrapolating to filling space with infinitely many, infinitely fine, pretend slits – that’s the

path integral. It generalizes beautifully to quantum field theory. But is sometimes not

the simplest way to solve non-relativistic QM problems, as seen for the free particle and

SHO. One benefit is that the integral over paths can be discretized and put on a computer.

This is what lattice gauge theorists (e.g. Julius Kuti) do in the context of quantum field

theory, e.g. to understand the theory behind the strong nuclear force. The classical limit:

if S ≫ h̄, the rapidly oscillating integral is sharply peaked around the classical path, since

the classical EOM extremizes S.

• Free particle example, take x0 ≡ xi and xN+1 ≡ xf .

K(xf , tf ; xi, ti) =

(

−im

2πh̄ǫ

)N/2 ∫ N
∏

i=1

dxi exp[
im

2h̄ǫ

N+1
∑

i=1

(xi − xi−1)
2]

Where we take ǫ → 0 and N → ∞, with Nǫ = T held fixed. Do integral in steps. Apply

expression for real gaussian integral (valid: analytic continuation):
∫

∞

−∞

dφ exp(iaφ2) =

√

iπ

a
.

where we analytically continued from the case of an ordinary gaussian integral. Think of

a as being complex. Then the integral converges for Im(a) > 0, since then it’s damped.

More generally, use Gaussian integrals:

Z(Ji) ≡
N
∏

i=1

∫

dφi exp(−Aijφiφi +Biφi) = πN/2(detA)−1/2 exp(A−1
ij BiBj/4).

After n− 1 steps, get integral:
(

2πih̄nǫ

m

)

−1/2

exp[
m

2πih̄nǫ
(xn − x0)

2].

So the final answer for the free particle

K(xf , tf ; xi; ti) =

(

2πih̄T

m

)

−1/2

exp[im(xb − xa)
2/2h̄T ].

which agrees with the answer that we obtained (via just one dp Gaussian integral in the

usual formulation of QM).
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