
10/31/16 Lecture 11 outline

• WKB (Wentzel, Kramers, Brillouin) approximation, continued. For high momen-

tum, ψE(x)’s wiggles are smaller than V (x)’s wiggles, so can approximate solutions via

V (x) ≈ constant and then add successive corrections. Write the time-indep SE in terms

of k(x) =
√

2m(E − V (x))/h̄2 or k(x) ≡ −i
√

2m(V (x)−E)/h̄2 in E < V and E > V

regions respectively, so

ψ′′

E + k(x)2ψE(x) = 0.

Take ψE(x) ≡ eiW (x)/h̄ to get

ih̄W ′′ − (W ′)2 + h̄2k2 = 0.

So for h̄|W ′′|2 ≪ |W ′|2 we end up withW ′

0(x) = ±h̄k(x), where the 0 means leading order.

Recall that we saw (in the context of probability conservation that this was Hamilton’s

equation, in the classical limit. We plug this back in to get an iterative equation for Wn+1

in terms of Wn. In particular, (W0 + h̄W1)
′ = ±

√

h̄2k(x)2 + ih̄W ′′

0 where expanding the

square-root (validity of the WKB approximation requires that k′ ≪ k2) and integrating

gives

ψE ≈ ei(W0+h̄W1)/h̄) ≈ |k(x)|−1/2 exp[±i
∫ x

dx′k(x′)].

Note that |ψE |2 ≈ |k(x)|−1 ∼ 1/v(x), which agrees with what one might call the

classical likelihood of finding a particle with velocity v in some region dx, since dx/v = dt

is the time that it spends in that region.

• We have to patch together these solutions across the values of x where E = V ; in

those vicinities can approximate in terms of the linear potential, with the Airy function.

Suppose that there are classical turning points at x = x1 and x = x2, so the classical

motion is for x1 ≤ x ≤ x2, which is called region II. Regions I and III are the classically

forbidden regions x < x1 and x > x2. Match the WKB solution in region II to the asymp-

totic behavior of the Airy function at the turning point, where V is approximately linear:

Ai(z) → z−1/4(2
√
π)−1e−2z3/2/3 for z → ∞ and Ai(z) → |z|−1/4π−1/2 cos(2/3|z|3/2−π/4)

for z → −∞. So get

ψE,I→II → 2(E − V (x))−1/4 cos

(

h̄−1

∫ x

x1

dx′
√

2m(E − V (x′))− π/4

)

,

ψE,III→II → 2(E − V (x))−1/4 cos

(

−h̄−1

∫ x2

x

dx′
√

2m(E − V (x′)) + π/4

)

,
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and the two must agree. So the argument of the cos must differ by nπ. The up-

shot is that, if x1 and x2 are two classical turning points, these approximations lead

to
∫ x2

x1

dx
√

2m[E − V (x)] = (n + 1
2)πh̄, like the Born Sommerfield Wilson quantization

∮

pdq = 2πnh̄. Note that for e.g. the SHO the classical solution is x = A cos(ωt + φ),

p = mẋ = −mωA sin(ωt + φ),
∮

pdq =
∫ 2π/ω

0
A2mω2 sin2(ωt + φ)dt = πmωA2 = 2πE/ω,

so the WKB quantization rule gives En = (n + 1
2
)h̄ω, so in this case it gives the exact

result. More generally, it gives a good approximation for En when n≫ 1.

• Also, tunneling through a barrier: probability ∼ e
−2

∫ x2

x1

√
2m(Veff (x)−E)dx/h̄

, where

x here could also denote the radial direction of a 3d system.

• Example: semi-infinite SHO and spectrum from keeping odd parity solutions.

• Example: particle of mass m in gravity, on a V = ∞ floor. Can use the same trick:

take V = mg|x| and restrict to x > 0 by keeping only parity odd solutions. The exact

solution can be found from the Airy function’s zeros. The approximate solution can be

found from the WKB method. The WKB approximation for the energy levels is found

from:

∫ E/mg

−E/mg

dx
√

2m(E −mg|x|) = 2

∫ E/mg

0

dx
√

2m(E −mgx) = (nodd +
1
2
)πh̄

Writing nodd = 2n − 1 with n = 1, 2, 3 . . . and doing the integral gives EWKB
n = 1

2
(3(n −

1
4 )π)

2/3(mg2h̄2)1/3. This agrees extremely well with the result from the zeros of Ai(z),

even for low n, and the agreement gets better and better as n is increased.

• Propagator: K(x2, t2; x1, t1) ≡ 〈x2|U(t2, t1)|x1〉. Evaluate by inserting complete set

of energy eigenstates. E.g. for free particle:

Kfree =

∫

dp

2πh̄
exp[i(p(x2 − x1)− p2(t2 − t1)/2m)/h̄] =

=

√

m

2πih̄(t2 − t1)
exp[im(x2 − x1)

2/2h̄(t2 − t1)].

For the SHO get

KSHO =
∑

n

un(x2)u
∗

n(x1)e
−iEn(t2−t1)/h̄ =

√

mω

2πih̄ sin(ω(t2 − t1))
exp[imω

(

(x22 + x21) cosω(t2 − t1)− 2x2x1
)

/2h̄ sin(ω(t2 − t1))].

These look a bit disgusting but are actually nice: the exponentials are the expected Hamil-

ton functions from classical mechanics, fitting with our discussion before. The fact that
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they are precisely the classical result, without additional quantum corrections, is special

to cases where every term in the Hamiltonian is at most quadratic. In terms of the path

integral, the WKB approximation is related to a saddle point approximation of integrals,

and the integrals reduce to Gaussians for the case of quadratic actions, and the saddle

point approximation in such special cases happens to be exact.

E.g. for a free particle we can evaluate S[xcl, ẋcl] =
∫ t2,x2

t1,x1

dt 12mẋ
2 = 1

2m(x1 −
x2)

2/(t1 − t2). For a SHO, S[xcl, ẋcl] =
∫

dt( 12A
2mω2)(sin2(ωt+ φ) − cos2(ωt+ φ)) = . . .

where we eliminate A and φ in terms of (x1, t1) and (x2, t2).

• Next time: path integral formulation of QM.
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