
10/26/16 Lecture 10 outline

• Charged particles in electric and magnetic fields. Gauge invariance. Recall from

classical mechanics that L = L0 + q
c~v · ~A − qφ, so ~p = ~p0 + q

c
~A. Aside on relativity:

∫

dt(−cφ+~v · ~A)(q/c) = −q/c
∫

Aµdx
µ is Lorentz invariant. Then H = (~p− q ~A/c)2/2m+

V (~x)+ qφ. Replace ~p→ −ih̄∇ in QM in position space. Gauge invariance: ~A→ ~A+ ∇f ,
φ → φ − ∂f/c∂t preserves ~E = −∇φ − ∂ ~A/c∂t. In QM it affects the phase of the

wavefunction ψ → eiqf/h̄cψ, but is an exact symmetry of any and all physics. Fundamental

in high energy physics: forces = gauge symmetries.

Aharanov-Bohm / Dirac effect: use ψ ∼ eiS/h̄ and compare interference on two paths,

on two sides of solenoid: ψ1/ψ2 = ei(S1−S2)/h̄ and note that (S1−S2) =
∮

(q/c) ~A·d~ℓ = qΦ/c,

where Φ is the magnetic flux. So e.g. ψ1 = ψ2 if qΦ = 2πh̄cn, which if we set Φ = 4πqmag is

Dirac’s quantization rule. Magnetic monopoles could be the explanation of electric charge

quantization.

• Particle in V (x) = V0θ(x) (step function, whose derivative is the delta function).

Consider cases E > V0 and E < V0.

• WKB (Wentzel, Kramers, Brillouin) approximation. For high momentum, ψE(x)’s

wiggles are smaller than V (x)’s wiggles, so can approximate solutions via V (x) ≈
constant and then add successive corrections. Write the time-indep SE in terms of

k(x) =
√

2m(E − V (x))/h̄2 or k(x) ≡ −i
√

2m(V (x)− E)/h̄2 in E < V and E > V

regions respectively, so

ψ′′

E + k(x)2ψE(x) = 0.

Take ψE(x) ≡ eiW (x)/h̄ to get

ih̄W ′′ − (W ′)2 + h̄2k2 = 0.

So for h̄|W ′′|2 ≪ |W ′|2 we end up with W ′

0(x) = ±h̄k(x). Define W (x) =
∑

∞

n=0 h̄
nWn(x)

and plug back in to get an iterative equation for Wn+1 in terms of Wn. In particular,

(W0 + h̄W1)
′ = ±

√

h̄2k(x)2 + ih̄W ′′

0 where expanding the square-root and integrating

gives

ψE ≈ ei(W0+h̄W1)/h̄) ≈ |k(x)|−1/2 exp[±i
∫ x

dx′k(x′)].

Note that |ψE |2 ≈ |k(x)|−1 ∼ 1/v(x), which agrees with what one might call the classical

likelihood of finding a particle with velocity v in some region dx, since dx/v = dt is the

time that it spends in that region.
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• We have to patch together these solutions across the values of x where E = V ; in

those vicinities can approximate in terms of the linear potential, with the Airy function.

Suppose that there are classical turning points at x = x1 and x = x2, so the classical

motion is for x1 ≤ x ≤ x2, which is called region II. Regions I and III are the classically

forbidden regions x < x1 and x > x2. Match the WKB solution in region II to the

asymptotic behavior of the Airy function: Ai(z) → z−1/4(2
√
π)−1e−2z3/2/3 for z → ∞ and

Ai(z) → |z|−1/4π−1/2 cos(2/3|z|3/2 − π/4) for z → −∞. So get

ψE,I→II → 2(E − V (x))−1/4 cos

(

h̄−1

∫ x

x1

dx′
√

2m(E − V (x′))− π/4

)

,

ψE,III→II → 2(E − V (x))−1/4 cos

(

−h̄−1

∫ x2

x

dx′
√

2m(E − V (x′)) + π/4

)

,

and the two must agree. So the argument of the cos must differ by nπ. The up-

shot is that, if x1 and x2 are two classical turning points, these approximations lead

to
∫ x2

x1

dx
√

2m[E − V (x)] = (n + 1
2)πh̄, like the Born Sommerfield Wilson quantization

∮

pdq = 2πnh̄. Note that for e.g. the SHO the classical solution is x = A cos(ωt + φ),

p = mẋ = −mωA sin(ωt + φ),
∮

pdq =
∫ 2π/ω

0
A2mω2 sin2(ωt + φ)dt = πmωA2 = 2πE/ω,

so the WKB quantization rule gives En = (n + 1
2
)h̄ω, so in this case it gives the exact

result. More generally, it gives a good approximation for En when n≫ 1.
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