10/26/16 Lecture 10 outline

e Charged particles in electric and magnetic fields. Gauge invariance. Recall from
classical mechanics that L = Lo + 27" A—qp, s0p = po+ %ff Aside on relativity:
[dt(—co+T-A)(q/c) = —q/c [ Auda is Lorentz invariant. Then H = (5— qA/c)?/2m +
V(%) + q¢. Replace p— —ih V in QM in position space. Gauge invariance: A— A+ V£,
¢ — ¢ — Of/cOt preserves E = —Vo¢ — 8@/6&. In QM it affects the phase of the
wavefunction 1) — €'4//"¢y) but is an exact symmetry of any and all physics. Fundamental
in high energy physics: forces = gauge symmetries.

Aharanov-Bohm / Dirac effect: use ¢ ~ ¢**/" and compare interference on two paths,
on two sides of solenoid: 1 /1y = €*(51752)/% and note that (S;—S5) = f(q/c)ff-dfz q®/c,
where @ is the magnetic flux. So e.g. ¥ = 9 if ¢® = 27hen, which if we set ® = 47¢,q4 is
Dirac’s quantization rule. Magnetic monopoles could be the explanation of electric charge
quantization.

e Particle in V(z) = Vpf(x) (step function, whose derivative is the delta function).
Consider cases £ > Vy and E < Vj.

e WKB (Wentzel, Kramers, Brillouin) approximation. For high momentum, g (z)’s
wiggles are smaller than V(x)’s wiggles, so can approximate solutions via V(z) =
constant and then add successive corrections. Write the time-indep SE in terms of

= \/Qm(E—V(:c))/h2 or k(z) = —z\/Qm E)/h>in E <V and E > V

regions respectively, so

k(z)*yp(x) =
Take ¢ (z) = W @)/7 to get
ihW" — (W')? + h*k? = 0.

So for h|W"|? < |W’|* we end up with W{(z) = +hk(z). Define W (z) = Y07 "W, (z)
and plug back in to get an iterative equation for W,, 1 in terms of W,,. In particular,

(Wo + hW7) :t\/ h2 2+ ihW/} where expanding the square-root and integrating

gives
Vi ~ fWothWO/R) o | ()| ~1/2 exp[j:i/ dx'k(z")].

Note that |[¢Yg|? ~ |k(z)|~! ~ 1/v(z), which agrees with what one might call the classical
likelihood of finding a particle with velocity v in some region dz, since dx/v = dt is the

time that it spends in that region.



e We have to patch together these solutions across the values of x where £ = V; in
those vicinities can approximate in terms of the linear potential, with the Airy function.
Suppose that there are classical turning points at * = x; and x = x5, so the classical
motion is for z; < x < x9, which is called region II. Regions I and III are the classically
forbidden regions x < z; and x > z5. Match the WKB solution in region II to the
asymptotic behavior of the Airy function: Ai(z) — 2_1/4(2\/7_1')_16_223/2/3 for z — oo and
Ai(2) = |z| 722 cos(2/3|2|3/% — 7 /4) for z — —o0. So get

V111 — 2(E —V(z)) ™Y cos (h_l /; dx'\/2m(E -V (z')) — 7r/4) ,

1

Grarioin 2B = Vi) cos (<0 [ s BBV + /1),

and the two must agree. So the argument of the cos must differ by nw. The up-
shot is that, if x; and x, are two classical turning points, these approximations lead
to fff dz\/2m[E — V(z)] = (n+ 3)7h, like the Born Sommerfield Wilson quantization
$ pdq = 2mnh. Note that for e.g. the SHO the classical solution is x = A cos(wt + ¢),
p =mi = —mwAsin(wt + ¢), ¢ pdg = O%/M A?mw? sin?(wt + ¢)dt = TmwA? = 2nE Jw,

so the WKB quantization rule gives E,, = (n + %)hw, so in this case it gives the exact

result. More generally, it gives a good approximation for F,, when n > 1.



