
10/26 Lecture outline

⋆ Reading for today’s lecture: Coleman lecture notes pages 103-120 (skip

parts about counterterms for now).

• Last time:

〈f |(S − 1)|i〉 = 〈f |Te−i
∫

d4x:HI :(x)|i〉 ≡ iAfi(2π)
4δ(4)(pf − pi).

computing in the toy model for nucleons and mesons:

L = 1
2 (∂φ

2 − µ2φ2) + (∂ψ†∂ψ −m2ψ†ψ)− gφψψ†.

So HI = gφψ†ψ. Recall φ ∼ a + a† for “mesons,” ψ ∼ b + c†, and ψ† ∼ b† + c. We’ll

say that b annihilates a nucleon N and c† creates an anti-nucleon N̄ . Conservation law,

conserved charge Q = Nb −Nc.

We considered N +N → N +N , to O(g2). The final result is

i(−ig)2
[

1

(p1 − p′1)
2 − µ2

+
1

(p1 − p′2)
2 − µ2

]
(2π)4δ(4)(p1 + p2 − p′1 − p′2).

Explicitly, in the CM frame, p1 = (
√
p2 +m2, pê) and p2 = (

√
p2 +m2,−pê), p′1 =

(
√
p2 +m2, pê′), p′2 = (

√
p2 +m2,−pê′), where ê · ê′ = cos θ, and get

A = g2
(

1

2p2(1− cos θ) + µ2
+

1

2p2(1 + cos θ) + µ2

)
.

According to the above, [A(2 → 2)] = 0 and the above is consistent with that. Good.

Note also that the amplitude is symmetric if we exchange pµ1 ↔ pµ2 and likewise for

the outgoing states. This fits with the fact that the N states are identical bosons, which

follows from the fact that [ψ(t, ~x), ψ(t, ~y)] = 0. As we’ll discuss later, identical fermions

instead have {ψ(t, ~x), ψ(t, ~y)} = 0.

• Recall how we got the above answer. We expand exp(−ig
∫
d4xH) and compute

the time ordered expectation values using Wick’s theorems, with the contractions giving

factors of DF (x1 − x2). Doing this, we get a
∫
d4x for each factor of −ig and a d4k for

each internal contraction. Draw a picture in position space. Let E be the number of

external lines, i.e. the number of incoming + outgoing particles. (We saw last time that

[A] = 4− E.) It is easier to think about everything in momentum space. Then the
∫
d4x

for each vertex gives a (2π)4δ4(ptotal, in).
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• Feynman rules! Each vertex gets (−ig)(2π)4δ4(ptotal in), each internal line gets
∫

d4k
(2π)4DF (k

2), where DF is the propagator, e.g. DF (k
2) = i

k2−m2+iǫ
. Result is 〈f |(S −

1)|i〉, so divide by (2π)4δ4(pF − pI) to get iAfi.

If the diagram has no loops, the momentum conserving delta functions fix all internal

momenta in terms of the external ones. When the diagram has L 6= 0 loops, the procedure

above yields integrals over the internal momenta of the loops. (Note that if a diagram has

I internal lines and V vertices, then there are I momentum integrals, and V momentum

conserving delta functions; one of these becomes overall momentum conservation, so there

are L = I − V − 1 momentum integrals left to do, and L is the number of loops in the

diagram.) Any loop momentum integrals require renormalization, which we’ll discuss later

(next quarter), so for now we’ll just consider “tree-level” contributions, associated with

diagrams without loops, L = 0.

• More examples:

(1) N(p1) + N̄(p2) → N(p′1) + N̄(p′2) has

iA = (−ig)2
(

i

(p1 − p′1)− µ2
+

i

(p1 + p2)− µ2

)
.

(2) N(p1) + N̄(p2) → φ(p′1)φ(p
′
2) has

iA = (−ig)2
(

i

(p1 − p′1)−m2
+

i

(p1 − p′2)−m2

)
.

(3) N(p1) + φ(p2) → N(p′1) + φ(p′2) has

iA = (−ig)2
(

i

(p1 − p′2)−m2
+

i

(p1 + p2)−m2

)
.

Note: the 1/2! from expanding e−i
∫

d4xHI(x) is cancelled by a factor of 2 from ex-

changing the two vertices.
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