10/26 Lecture outline

 \star Reading for today's lecture: Coleman lecture notes pages 103-120 (skip parts about counterterms for now).

• Last time:

$$
\langle f|(S-1)|i\rangle = \langle f|Te^{-i\int d^4x:\mathcal{H}_I:(x)}|i\rangle \equiv i\mathcal{A}_{fi}(2\pi)^4\delta^{(4)}(p_f-p_i).
$$

computing in the toy model for nucleons and mesons:

$$
\mathcal{L} = \frac{1}{2}(\partial \phi^2 - \mu^2 \phi^2) + (\partial \psi^{\dagger} \partial \psi - m^2 \psi^{\dagger} \psi) - g \phi \psi \psi^{\dagger}.
$$

So $\mathcal{H}_I = g\phi\psi^{\dagger}\psi$. Recall $\phi \sim a + a^{\dagger}$ for "mesons," $\psi \sim b + c^{\dagger}$, and $\psi^{\dagger} \sim b^{\dagger} + c$. We'll say that b annihilates a nucleon N and c^{\dagger} creates an anti-nucleon \bar{N} . Conservation law, conserved charge $Q = N_b - N_c$.

We considered $N + N \to N + N$, to $\mathcal{O}(g^2)$. The final result is

$$
i(-ig)^2 \left[\frac{1}{(p_1 - p'_1)^2 - \mu^2} + \frac{1}{(p_1 - p'_2)^2 - \mu^2} \right] (2\pi)^4 \delta^{(4)}(p_1 + p_2 - p'_1 - p'_2).
$$

Explicitly, in the CM frame, $p_1 = (\sqrt{p^2 + m^2}, p\hat{e})$ and $p_2 = (\sqrt{p^2 + m^2}, -p\hat{e})$, $p'_1 =$ $(\sqrt{p^2+m^2}, p\hat{e}'), p_2' = (\sqrt{p^2+m^2}, -p\hat{e}'),$ where $\hat{e} \cdot \hat{e}' = \cos \theta$, and get

$$
\mathcal{A} = g^2 \left(\frac{1}{2p^2(1 - \cos \theta) + \mu^2} + \frac{1}{2p^2(1 + \cos \theta) + \mu^2} \right).
$$

According to the above, $[\mathcal{A}(2 \to 2)] = 0$ and the above is consistent with that. Good.

Note also that the amplitude is symmetric if we exchange $p_1^{\mu} \leftrightarrow p_2^{\mu}$ $\frac{\mu}{2}$ and likewise for the outgoing states. This fits with the fact that the N states are identical bosons, which follows from the fact that $[\psi(t, \vec{x}), \psi(t, \vec{y})] = 0$. As we'll discuss later, identical fermions instead have $\{\psi(t, \vec{x}), \psi(t, \vec{y})\} = 0.$

• Recall how we got the above answer. We expand $\exp(-ig \int d^4x \mathcal{H})$ and compute the time ordered expectation values using Wick's theorems, with the contractions giving factors of $D_F(x_1 - x_2)$. Doing this, we get a $\int d^4x$ for each factor of $-ig$ and a d^4k for each internal contraction. Draw a picture in position space. Let E be the number of external lines, i.e. the number of incoming $+$ outgoing particles. (We saw last time that $[A] = 4 - E$.) It is easier to think about everything in momentum space. Then the $\int d^4x$ for each vertex gives a $(2\pi)^4 \delta^4(p_{total, in}).$

• Feynman rules! Each vertex gets $(-ig)(2\pi)^4 \delta^4(p_{total\ in})$, each internal line gets $\int \frac{d^4k}{4}$ $\frac{d^4k}{(2\pi)^4}D_F(k^2)$, where D_F is the propagator, e.g. $D_F(k^2) = \frac{i}{k^2 - m^2 + i\epsilon}$. Result is $\langle f|(S - k^2)$ 1)|i), so divide by $(2\pi)^4 \delta^4(p_F - p_I)$ to get $i\mathcal{A}_{fi}$.

If the diagram has no loops, the momentum conserving delta functions fix all internal momenta in terms of the external ones. When the diagram has $L \neq 0$ loops, the procedure above yields integrals over the internal momenta of the loops. (Note that if a diagram has I internal lines and V vertices, then there are I momentum integrals, and V momentum conserving delta functions; one of these becomes overall momentum conservation, so there are $L = I - V - 1$ momentum integrals left to do, and L is the number of loops in the diagram.) Any loop momentum integrals require renormalization, which we'll discuss later (next quarter), so for now we'll just consider "tree-level" contributions, associated with diagrams without loops, $L = 0$.

• More examples:

(1)
$$
N(p_1) + \bar{N}(p_2) \to N(p'_1) + \bar{N}(p'_2)
$$
 has

$$
i\mathcal{A} = (-ig)^2 \left(\frac{i}{(p_1 - p'_1) - \mu^2} + \frac{i}{(p_1 + p_2) - \mu^2} \right)
$$

.

(2) $N(p_1) + \bar{N}(p_2) \rightarrow \phi(p'_1)\phi(p'_2)$ has

$$
iA = (-ig)^2 \left(\frac{i}{(p_1 - p'_1) - m^2} + \frac{i}{(p_1 - p'_2) - m^2} \right).
$$

(3) $N(p_1) + \phi(p_2) \to N(p'_1) + \phi(p'_2)$ has

$$
i\mathcal{A} = (-ig)^2 \left(\frac{i}{(p_1 - p'_2) - m^2} + \frac{i}{(p_1 + p_2) - m^2} \right).
$$

Note: the 1/2! from expanding $e^{-i\int d^4x \mathcal{H}_I(x)}$ is cancelled by a factor of 2 from exchanging the two vertices.