
10/14 Lecture outline

⋆ Reading for today’s lecture: Coleman lecture notes pages 70-80.

• Last time: contraction of two fields A(x) and B(y) by T (A(x)B(y))− : A(x)B(y) :.

This is a number, not an operator. Let e.g. φ(x) = φ+(x) + φ−(x), where φ+ is the term

with annihilation operators and φ− is the one with creation operators (using Heisenberg

and Pauli’s reversed-looking notation). Then for x0 > y0 the contraction is [A+, B−], and

for y0 > x0 it is [B+, A−]. So can put between vacuum states to get that the contraction is

〈TA(x)B(y)〉. For example, in the KG theory the contraction of φ(x) and φ(y) isDF (x−y).

Wick’s theorem (we’ll soon see it’s useful, since S-matrix elements will involve T

ordered correlation functions):

T (φ1 . . . φn) =: φ1 . . . φn : +
∑

contractions

: φ1 . . . φn :

=: e
1
2

∑

n

i,j=1
C(φiφj)

∂
∂φi

∂
∂φj φ1 . . . φn

:

(where C is the contraction symbol) to get rid of the time ordered products.

Prove Wick’s theorem by iteration: define the RHS as W (φ1 . . . φn) and we assume

T (φ2 . . . φn) = W (φ2 . . . φn) and want to prove then that T (φ1 . . . φn) = W (φ1 . . . φn).

WLOG, take t1 > t2 . . . tn so T (φ1 . . . φn) = φ1T (φ2 . . . φn) = φ1W (φ2 . . . φn) = φ−1 W +

Wφ+1 + [φ+1 ,W ]. The first two terms are normal ordered and give all contractions not

involving φ1, while the last gives all normal ordered contractions involving φ1.

So note that

〈T (φ1 . . . φn)〉

{

0 for n odd
∑

fullycontracted for n even.

• Simple examples of interacting theory:

L = 1
2 (∂φ

2 − µ2φ2)− ρ(x)φ

with ρ(x) an external source forcing function. We’ll show this theory is exactly solvable

and gives probability for particle creation given by the Poisson distribution.

Next example:

L = 1
2
(∂φ2 − µ2φ2) + (∂ψ†∂ψ −m2ψ†ψ)− gφψψ†.

Toy model for interacting nucleons and mesons. Treat last term as a perturbation.
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• In QM we can use the S-picture, ih̄ d
dt
|ψ(t)〉S = H|ψ〉S, or the H-picture, where t is

in the operators ih̄ d
dt
OH(t) = [OH , H].

In interacting theories, it is useful to use the hybrid, interaction picture. Write H =

H0 +Hint. We use H0 to time evolve the operators, and Hint to time evolve the states:

i
d

dt
OI(t) = [OI , H0], i

d

dt
|ψ(t)〉I = Hint|ψ(t)〉I .

|ψ(t)〉I = eiH0(qS ,pS)t|ψ(t)〉S, OI = eiH0tOSe
−iH0t

For example, we’ll take H0 to be the free Hamilton of KG fields, with only the mass terms

included in the potential. Again, this is free because the EOM are linear, and we can solve

for φ(x) by superposition. HI(t) is built from these free fields

φ(~x, t) = eiH0tφS(~x)e
−iH0t.

As before, upon quantization, the fields become superpositions of creation and annihilation

operators. The states are all the various multiparticle states, coming from acting with the

creation operators on the vacuum. Time evolution is via the interaction picture operator

that satisfies

i
d

dt
UI(t, t

′) = HI(t)UI(t, t
′).

• Compute probabilities from squaring amplitudes, and amplitudes from 〈f(t =

+∞)|i(t = −∞)〉 = 〈f |S|i〉 = 〈f |U(∞,−∞)|i〉. Naively, U(tf , ti) = exp(− i
h̄

∫ tf

ti
Hint(t)dt),

but have to be careful about Hint not commuting at different times. Get time ordering.

• Dirac’s / Dyson’s formula:

UI(t, t
′) = Te

−i
∫

t

t′
dt′′

HI(t
′′).

Compute scattering S-matrices. Consider asymptotic in and out states, with the

interaction turned off. Time evolve, with the interaction smoothly turned on and off in

the middle (see Coleman notes for more details).

|ψ(t)〉 = Te−i
∫

d4xHI |i〉.

Derive it by solving i d
dt
|ψ(t)〉 = HI(t)|ψ(t)〉 iteratively:

|ψ(t)〉 = |i〉+ (−i)

∫ t

−∞

dt1HI(t1)|ψ(t1)〉
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|ψ(t1)〉 = |i〉+ (−i)

∫ t1

−∞

dt2HI(t2)|ψ(t2)〉

etc where t1 > t2, and then symmetrize in t1 and t2 etc., which is what the T time ordering

does. Illustrate it for 2nd term (−i)2/2!
∫ t

t′
dt1

∫ t

t′
dt2T (HI(t1)HI(t2), get twice the integral

over the t1 > t2 region instead of the integral over the square.

• Now use Wick’s theorem to get rid of the time ordered products. Thereby compute

probability amplitude for a given process

〈f |(S − 1)|i〉 = 〈f |Te−i
∫

d4xHI(x)|i〉 ≡ iAfi(2π)
4δ(4)(pf − pi).

The initial states have momenta p1 . . . pn and the final states have momenta q1 . . . qm. Need

to strip off the momentum conserving delta function to get the amplitude.

• Look at some examples, and connect with Feynman diagrams. As a first, simple

example consider the above theory, withHint =
∫

d3xgφψ†ψ. Use φ ∼ a+a† for “mesons,”

ψ ∼ b + c†, and ψ† ∼ b† + c. We’ll say that b annihilates a nucleon N and c† creates an

anti-nucleon N̄ . Conservation law, conserved charge Q = Nb −Nc.

Examples of states:

|φ(p)〉 = a†(p)|0〉, |N(p)〉 = b†(p)|0〉, |N̄(p)〉 = c†(p)|0〉.

Note then e.g.

〈0|φ(x)|φ(p)〉 = e−ip·x, 〈0|ψ(x)|N(p)〉 = e−ip·x, 〈0|ψ†(x)|N(p)〉 = 0.

Example: meson decay. |i〉 = a†(p)|0〉, |f〉 = b†(q1)c
†(q2)|0〉. Compute 〈f |S|i〉 =

−ig(2π)4δ4(p− q1 − q2) to O(g), i.e. A = −g. Probability ∼ g2.

Comment: draw pictures to illustrate a ∼ g3 correction, with 1 loop. In general,

amplitudes scale like (g2/16π2)L where L is the number of loops. But we’ll see that loops

lead to divergent momenta integrals, eg.
∫ Λ

d4k/k2 −m2 ∼ Λ2. How to handle this will

be deferred to next quarter...

3


