
10/5 Lecture outline

⋆ Reading for today’s lecture: Coleman to end of lecture 4 (p. 37).

• Last time: symmetries of L and Noether’s theorem. If a variation δφa changes

δL = ∂µF
µ, then it’s a symmetry of the action and there is a conserved current: jµ =

∂L
∂(∂µφa)

δφa − Fµ.

Translation invariance: xµ → xµ + ǫµ, δφa = ǫν∂νφa, δL = ǫν∂νL (assuming no

explicit x dependence). Get Tµν = ∂L
∂∂µφa

∂νφa − gµνL. Stress energy tensor. Conserved

charge is Pµ =
∫
d3~xTµ0. Another example: xµ′

= Λµ′

ν xν Lorentz boost and rotation

symmetry leads to conservation of angular momentum. Write Λµ
ν = δµν + ωµ

ν , leads to

conserved Mµρσ = xµTρσ − xσTρµ. Conserved charge is Mρσ =
∫
d3xM0ρσ.

• Apply to LKG = 1
2∂µφ∂

µφ− 1
2m

2φ2. Get Tµν = ∂µφ∂νφ− 1
2ηµν∂λφ∂

λφ+ 1
2m

2φ2ηµν .

So

H =

∫
d3xH, ~P =

∫
d3x~P.

H = 1
2
φ̇2 + 1

2
(∇φ)2 + 1

2
m2φ2, ~P = φ̇∇φ.

• Recall from last week: SHO = KG equation in 0 + 1 dimensions, i.e. the SHO:

L = 1
2 φ̇

2− 1
2ω

2φ2, Π = ∂L/∂φ̇ = φ̇. Now quantize: [φ,Π] = ih̄, [a, a†] = 1, H = ω(a†a+ 1
2 ).

Heisenberg picture, φ̂ =
√

1
2ω (ae

−iωt + a†eiωt); Π = φ̇ = −i
√

ω
2 (ae

iωt − a†e−iωt). Define

|0〉 s.t. a|0〉 = 0, and |n〉 = cn(a
†)n|0〉.

• Canonical quantization: generalize QM by replacing qa(t) → φ(t, ~x). It’s conjugate

momentum is Π ≡ ∂L/∂φ̇. The theory is quantized by replacing φ and Π with operators

(sometimes we’ll give them hats, but usually won’t bother), satisfying

[φa(~x, t),Πb(~y, t)] = iδabδ
3(~x− ~y) (Equal time commutators).

[φa(~x, t), φb(~y, t)] = 0.

• Quantize the KG field theory in 3 + 1 dimensions. Write

φ(x) =

∫
d3k

(2π)3
1√
2ω~k

[a~ke
−ikx + a†~k

eikx],

Π(x) = φ̇(x) =

∫
d3k

(2π)3
(−i)

√
ω~k

2
[a~ke

−ikx − a†~k
eikx],
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Then canonical quantization implies that

[a~k, a
†
~k′
] = (2π)3δ3(~k − ~k′),

i.e. they’re creation and annihilation operators, with others vanishing. It will be useful to

define a(k) ≡
√
2ωka~k, so then the above becomes

φ(x) =

∫
d3k

(2π)32ω(k)
[a(k)e−ikx + a†(k)eikx],

[a(k), a†(k′)] = (2π)32ωkδ
3(~k − ~k′),

with the relativistic-invariant measures appearing.

The quantum field φ is a superposition of creation and annihilation operators. Also,

plugging into our expressions for energy and momentum gives the operators

H = 1
2

∫
d3k

(2π)2(2ω)
ω(a(~k)a†(~k) + a†(~k)a(~k)),

~P = 1
2

∫
d3k

(2π)2(2ω)
~k(a(~k)a†(~k) + a†(~k)a(~k)),

Need to normal order the first term. Define : AB : for operators A and B to mean that

the terms are arranged so that the annihilation operators are on the right, so annihilates

the vacuum.

• The vacuum |0〉 is annihilated by all a(k). Create states with momenta pµ1 , . . ., p
µ
n

via a†(p1) . . . a
†(pn)|0〉. Note that these behave as identical bosons: the state is symmetric

under exchanging any pair of momenta, because [a†(p), a†(p′)] = 0.

• Two-point field correlation function:

〈0|φ(x)φ(y)|0〉 ≡ D(x− y) =

∫
d3k

(2π)32ω(k)
e−ik(x−y).

Note also that 2i∂x0D(x− y) is the integral that we saw in last lecture, for the probability

amplitude to find a particle having traveled with spacetime displacement (x − y)µ. For

spacelike separation, (x−y)2 = −r2, we here get D(x−y) = m
2π2r

K1(mr), with K1 a Bessel

function. Recall that the Bessel function has a simple pole when its argument vanishes,

and exponentially decays at infinity. So D(x − y) ∼ exp(−m|~x − ~y|) is non-vanishing

outside the forward light cone.
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