
9/30 Lecture outline

⋆ Reading for today’s lecture: Coleman to end of lecture 4 (p. 37).

• Recall where we left off: show that 〈xµ|0µ〉 =
∫

d3k
(2π)3 e

−ip·x is not zero even for

spacelike separation, x2 < 0:

〈~x|ψ(t)〉 = 〈~x|e−iHt|~x = 0〉 =
∫

d3p

(2π)3
ei~p·~xe−i

√
~p2+m2t

= − i

(2π)2r

∫ ∞

−∞

pdpeipre−i
√

p2+m2t

=
ie−mr

2π2r

∫ ∞

m

dzze−(z−m)r sinh(
√

z2 −m2t)

The last step is by deforming the contour in the complex p plane, and getting contributions

along the branch cut in the UHP, with z = −ip; the contribution along the big semi-circle

at infinity vanishes for r > t. The integral is positive, so non-vanishing outside the forward

light cone: acausal, with causality recovered as an approximation for r ≫ m. In QFT,

the difference will be antiparticles to the rescue! The antiparticle contribution is added,

and cancels the acausality. Must give up on purely single-particle states in the relativistic

quantum realm.

Resolution: we can’t have position eigenstates and operators. Replace particles with

ripples of quantum field, e.g. φ(t, ~r), as we did for the case of the SHO, which again we

can reinterpret as a QFT in d = 0 + 1 dimensions, with q(t) playing role of φ(t).

• Multiparticle warmup: recall SHO, [a, a†] = 1, and states. Recall 1 = |0〉〈0| +
∑∞

n=1 |n〉〈n|, sum over phonon occupation number states.

• QFT in d = 3 + 1 dimensions, replace particles with ripples of quantum field, e.g.

φ(t, ~r). Mention QFT in d = 0 + 1 dimensions is QM, with q(t) playing role of φ(t).

• Convenient to work in momentum space. Sometimes it’s mathematically convenient

to think about the theory in a box, to make momenta discrete. Then the integrals become

sums, and the delta functions become Kroneker deltas. Can then count how many exci-

tations of each momenta. Fock space description, like counting the excitation level of the

SHO. Like, there, we’ll introduce creation and annihilation operators.

• Classical and quantum particle mechanics, L(qa, q̇a, t), pa = ∂L/∂q̇a, ṗa = ∂L/∂qa,

H =
∑

a paq̇a −L. Get quantum theory by replacing Poisson brackets with commutators,

[qa(t), pb(t)] = iδab. Recall OH(t) = eiHtOSe
−iHt and i d

dt
OH(t) = [OH(t), H].
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• Classical field theory. E.g. scalars φa(t, ~x), with S =
∫

d4xL(φa, ∂µφa). Then
Πµ

a = ∂L/∂(∂µφa), and E.L. eqns ∂L/∂φa = ∂µΠ
µ
a . Define Πa ≡ Π0

a. H =
∫

d3x(Πφ̇a −
L) =

∫

d3xH.

• Example: L = 1
2 (∂µφ∂

µφ −m2φ2), gives Π = φ̇ and Π̇ = ∇2φ −m2φ, the Klein-

Gordon equation: (∂2+m2)φ = 0. Can’t interpret φ as a probability wavefunction because

of solutions E = ±
√

~p2 +m2.

But we’ll see that the KG equation is fine as a quantum field theory. As a classical

field theory, write general classical solution as

φcl(x) =

∫

d3k

(2π)3(2ω(k))
[acl(k)e

−ikx + a∗cl(k)e
ikx],

where acl(k) are classical constants of integration, determined by the initial conditions.

• The normalization of the momentum space integral is chosen to be relativistically

nice: it’s Lorentz invariant: d3k/ω = d3k′/ω′. Here’s why: d4kδ(k2 −m2)θ(k0) → d3k
2ω(k)

upon doing the k0 integral. So normalize 〈k′|k〉 = (2π)32ω(k)δ3(~k − ~k′), with |k〉 ≡
√

(2π)32ωk|~k〉.
• Important aspect of classical or quantum field theory: continuous symmetries of L

lead to conservation laws, via Noether’s theorem. If a variation δφa changes δL = ∂µF
µ,

then it’s a symmetry of the action and there is a conserved current: jµ = ∂L
∂(∂µφa)

δφa−Fµ.

Example: xµ → xµ + ǫµ, δφa = ǫν∂νφa, δL = ǫν∂νL (assuming no explicit x de-

pendence). Get Tµν = ∂L
∂∂µφa

∂νφa − gµνL. Stress energy tensor. Conserved charge is

Pµ =
∫

d3~xTµ0.

Another example: Λµ
ν = δµν+ω

µ
ν , leads to conservedMµρσ = xµTρσ−xσTρµ. Conserved

charge is Mρσ =
∫

d3xM0ρσ. Conserved angular momentum.
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