9/30 Lecture outline
* Reading for today’s lecture: Coleman to end of lecture 4 (p. 37).

e Recall where we left off: show that (z*|0*) f (2703 k_e~P® is not zero even for

spacelike separation, 22 < 0:
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The last step is by deforming the contour in the complex p plane, and getting contributions
along the branch cut in the UHP, with z = —ip; the contribution along the big semi-circle
at infinity vanishes for » > t. The integral is positive, so non-vanishing outside the forward
light cone: acausal, with causality recovered as an approximation for » > m. In QFT,
the difference will be antiparticles to the rescue! The antiparticle contribution is added,
and cancels the acausality. Must give up on purely single-particle states in the relativistic
quantum realm.

Resolution: we can’t have position eigenstates and operators. Replace particles with
ripples of quantum field, e.g. ¢(t,7), as we did for the case of the SHO, which again we
can reinterpret as a QFT in d = 0 + 1 dimensions, with ¢(¢) playing role of ¢(t).

e Multiparticle warmup: recall SHO, [a,a!] = 1, and states. Recall 1 = [0)(0] +
>0, In)(n|, sum over phonon occupation number states.

e QFT in d = 3 4+ 1 dimensions, replace particles with ripples of quantum field, e.g.
o(t, 7). Mention QFT in d = 0 + 1 dimensions is QM, with ¢(¢) playing role of ¢(t).

e Convenient to work in momentum space. Sometimes it’s mathematically convenient
to think about the theory in a box, to make momenta discrete. Then the integrals become
sums, and the delta functions become Kroneker deltas. Can then count how many exci-
tations of each momenta. Fock space description, like counting the excitation level of the
SHO. Like, there, we’ll introduce creation and annihilation operators.

e Classical and quantum particle mechanics, L(qq,Ga,t), pa = OL/0qa, Do = OL/0qq,
H =", Pada — L. Get quantum theory by replacing Poisson brackets with commutators,
[qa(t), pp(t)] = i64p. Recall Op(t) = ' Oge™"t and i L Oy (t) = [Op(t), H].
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e Classical field theory. E.g. scalars ¢,(t,7), with S = [d*zL(¢q,,0a). Then
II# = 0L/(d,¢a), and E.L. eqns 0L/0¢, = 0,11%. Define I, = 0. H = [ d®z(1ld, —
L) = [d*zH.

e Example: £ = 1(0,60"¢ — m?¢?), gives Il = ¢ and II = V3¢ — m?¢, the Klein-
Gordon equation: (92+m?)¢ = 0. Can’t interpret ¢ as a probability wavefunction because
of solutions F = :t\/m.

But we’ll see that the KG equation is fine as a quantum field theory. As a classical
field theory, write general classical solution as
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where a.;(k) are classical constants of integration, determined by the initial conditions.

e The normalization of the momentum space integral is chosen to be relativistically
nice: it’s Lorentz invariant: d®k/w = d3k’/w’. Here’s why: d*kd(k? — m?)0(ko) — 2?)3(2)
upon doing the ko integral. So normalize (k'|k) = (27)32w(k)83(k — k'), with |k) =

V(2732w | k).

e Important aspect of classical or quantum field theory: continuous symmetries of £

lead to conservation laws, via Noether’s theorem. If a variation 6¢, changes 6L = 0, F*,
then it’s a symmetry of the action and there is a conserved current: j# = %&ba — F*,
Example: xt — xt + €, d¢po, = €’0,¢pq, 0L = €”9,L (assuming no explicit x de-
pendence). Get T, = agu—%a@ﬂba — guwL. Stress energy tensor. Conserved charge is
P, = [d*ZT,,.
Another example: AY = 64 +wk, leads to conserved M,,,» = ©,T,o—x51),. Conserved

charge is M,, = [ d*zMy,,. Conserved angular momentum.



