
12/2 Lecture outline

⋆ Reading: Tong chapter 6

• Last time: For the massive vector mesons, write down the general lagrangian:

L = −1
2
(∂µA

ν∂µA
ν + a∂µA

µ∂νA
ν + bAµA

µ).

The sign is chosen so that the kinetic terms of the spatial components have the right

sign. Write the EOM:

−∂2Aν − a∂ν(∂ ·A) + bAν = 0,

and note plane wave solutions Aµ(x) = ǫνe
−ik·x solves it if k2ǫν +akν(k · ǫ)+ bǫν = 0. The

longitudinal solutions have ǫ ∝ k and have mass µ2
L = −b/(1 + a). The transverse have

mass µ2
T = −b. Can eliminate the uninteresting longitudinal solution by taking a = −1

and b 6= 0, then write Proca lagrangian in terms of Fµν = ∂µAν − ∂νAµ

L = −
1

4
FµνF

µν + 1
2µ

2AµA
µ

Each component Aµ satisfies the KG equation with mass µ. Can choose ǫ(±) =

1√
2
(0, 1,∓i, 0) and ǫ(0) = (0, 0, 0, 1), where the label is the value of Jz of the spin 1 vector.

Normalize by ǫ(r)∗ · ǫ(s) = −δrs and
∑

r ǫ
(r)∗
µ ǫ

(r)
ν = −gµν +

kµkν

µ2 .

The conjugate momenta to Aµ are π0 = ∂L/∂Ȧ0 = 0, and πi = ∂L/∂Ȧi = −F 0i = Ei.

Then H = −1
2(F0iF

0i − 1
2FijF

ij + µ2AiA
i − 1

2µ
2A0A

0) ≥ 0.

• Quantize the massive vector:

[Ai(t, ~x), F
j0(t, ~y)] = iδji δ

(3)(~x− ~y).

In terms of the plane wave solutions,

Aµ(x) =

3
∑

r=1

∫

d3k

(2π)3(2ωk)

[

arkǫ
r
µe

−ikx + a†rk ǫ
∗r
µ e

ikx
]

,

(as usual, there is a choice of convention in the normalization of the creation and annihi-

lation operators), and with this normalization the quantization condition implies that

[ark, a
†s
k′ ] = δrs(2π)3(2ωk)δ

3(~k − ~k′).
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and

: H :=
∑

r

∫

d3k

(2π)3(2ωk)
ωka

†r
k a

r
k.

The propagator, the contraction of Aµ(x) and Aν(y), is

〈TAµ(x)Aν(y)〉 =

∫

d4k

(2π)4
e−ik(x−y)

[

−i(gµν − kµkν/µ
2)

k2 − µ2 + iǫ

]

.

So the Feynman rule is that massive vectors have the momentum space propagator

[

−i(gµν − kµkν/µ
2)

k2 − µ2 + iǫ

]

.

And 〈0|Aµ(x)|V (k, r)〉 = ǫµ(k)
re−ikx, so incoming vector mesons have ǫrµ(k) and outgoing

have ǫ∗r(k).

We can couple the massive vector to other fields, e.g. to a fermion via Lint = −gψ̄ /AΓψ,

with Γ = 1 (vector) or Γ = γ5 (axial vector). Gives Feynman rule that a vertex has a

factor of −igγµΓ.

• Now consider the massless theory. If we add L ⊃ −Aµj
µ to the massive theory,

get ∂µA
µ = µ−2∂µj

µ, so there is only a sensible limit if ∂µj
µ = 0, must couple to a

conserved current. Associate with symmetry, ψ → e−iλqψ, where q is the charge. The

massless theory must be associated with gauge invariance: can make above symmetry

transformations where λ = λ(x) is a local function, and this is a redundancy, rather than

a symmetry, when combined with Aµ → Aµ + 1
e
∂µλ(x), where e is a coupling constant.

Consider minimal coupling: replace ∂µ → Dµ = ∂µ + ieAµq for a charge q field to ensure

that the theory respects gauged version of the symmetry.

Another way to say it: the only way to have a sensible µ→ 0 limit is if Aµ is a gauge

field, associated with a local gauge symmetry. The reason is that the operator in brackets

in

[ηµν(∂
ρ∂ρ)− ∂µ∂ν ]A

ν = 0

is not invertable: it annihilates any function of form ∂µλ. Solution: require that Aµ ∼

Aµ + ∂µλ, i.e. gauge invariance. The space of gauge fields has equivalent gauge orbits.

Minimal coupling examples:

L = ψ̄(i /D −m)ψ = ψ̄(i/∂ − eq /A−m)ψ.

L = Dµφ
∗Dµφ−m2|φ|2.
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The first gives a ψ̄Aµψ Feynman vertex weighted by −ieqγµ, and the second gives a

φ∗(p′)Aµφ(p) vertex weighted by ieq(p+p′)µ, along with a AµAνφ
∗φ seagull graph weighted

by 2ie2q2gµν (factor of 2 because of the two identical Aµ fields).

As in the massive vector case, A0 has no kinetic term, can solve its EOM (∇ · ~E =

0 → ∇2A0 + ∇ · ~̇A = 0):

A0(~x) =

∫

d3~x′
∇ · ~̇A(~x′)

4π|~x− ~x′|
.

Gauge fixing: can always choose e.g. ∂µA
µ = 0. Doesn’t entirely fix the gauge. Can still

pick ∇ · ~A = 0 – Coulomb gauge – then A0 = 0. See two polarizations. So take ~ǫr with

~ǫr · ~p = 0, orthonormal. The completeness relation is similar to that above, except that we

replace µ2 → |~p|2. The propagator is then

〈TAi(x)Aj(y)〉 =

∫

d4k

(2π)4
e−ik(x−y)

[

i(δij − kikj/|~k|
2)

k2 + iǫ

]

.

This gauge can be a pain in the interacting theory (need to write instantaneous δ(x0 −

y0)/|~x − ~y| Coulomb interaction). It’s nicer to write something more manifestly Lorentz

invariant.

In the massive vector case, we had the propagator −i(gµν −kµkν/|µ|
2)/(k2−µ2 + iǫ).

In the µ → 0 massless gauge theory, gauge invariance ensures that the kµkν term has no

effect in physical, on-shell amplitudes. For example, e+e− → µ+µ− tree-level amplitude,

show that the kµkν term in the propagator doesn’t contribute for on-shell external states.

Another example: Compton scattering of vector off an electron: iA = Mµνǫ
(r′)∗
µ (k′)ǫ

(r)
ν (k).

Observe that kµMµν = 0, decouples the helicity 0 mode. Also, square amplitude and

average over initial polarizations and sum over the final ones, and note that kµMµν , and

likewise for k′, ensures that the 1/µ2 terms in the polarization completeness relation go

away.

• Gauge fixing. Try to preserve Lorentz invariance by imposing ∂µA
µ = 0, and not

A0 = 0. Can modify L to get Lorentz gauge EOM. More generally, can consider

L = −
1

4
FµνF

µν −
1

2α
(∂ ·A)2,

and quantize for any parameter α. Popular choices are α = 1 (Feynman) and α = 0

(Landau). Now get π0 = ∂L/∂(Ȧ0) = −∂µA
µ/α. Do canonical quantization for all com-

ponents, [Aµ(~x), πν(~y)] = iηµνδ(~x− ~y). Write plane wave expansion with 4 polarizations,
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normalized to ǫλ · ǫλ
′

= ηλλ
′

. Get that timelike polarizations create negative norm states.

Can fix this by imposing ∂µA+
µ |Ψ〉 = 0 on the physical states, along with gauge invariance

relation, to get a physical Hilbert space with positive norms.

Propagator for gauge field is

〈TAµ(x)Aν(y)〉 =

∫

d4k

(2π)4
e−ik(x−y)

[

−i(gµν + (α− 1)kµkν/k
2)

k2 + iǫ

]

.

Again, the kµkν piece will drop out in the end in physical amplitudes. Just need to make

a choice and stick with it consistently. Or keep α as a parameter, and then it’s a good

check on the calculation that the α indeed drops out in the end.

• QED examples:

Compton scattering, e−γ → e−γ (related to e+e− → γγ by crossing symmetry):

iA = −ie2ǫ∗µ(k
′)ǫν(k)ū

r′(p′)

[

γµ(/p+ /k +m)γν

(p+ k)2 −m2
+ (k → −k′).

]

ur(p)

= −iǫ∗µ(k
′)ǫν(k)ū

r′(p′)

[

γµ/kγν + 2γµpν

2p · k
+ (k → −k′)

]

ur(p).

To compute the differential cross section, we square this and multiply it by the 2 → 2

phase space factor. It simplifies to sum over final state spins and average over initial state

ones. You can find this worked out in great detail, for the case of Compton scattering, in

section 5.5 of Peskin and Schroeder.

• Ward identity: if the polarization ǫµ(k) of any external photon is replaced with its

4-momentum, ǫµ(k) → kµ, the amplitude vanishes. This can be proved in general, and

it ensures that amplitudes respect gauge invariance. See Peskin and Schroeder for more

details, and you’ll see more about it next quarters.

Other examples, e+e− → e+e− and e−e− → e−e−. The two are related by crossing

symmetry. Mention e−e∓ → e−e∓ and the Coulomb potential: opposites attract and

same sign charges repel. Contrast this with the scalar Yukawa case, where the potential is

always attractive. Because here v̄γ0v → +2m, whereas in the scalar case got v̄v →= −2m.
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