
11/30 Lecture outline

⋆ Reading: Tong chapters 5, 6

• Last time:

L ⊃ ψ̄(i/∂ −m)ψ → fermion propagator:
i

/p−m+ iǫ
,

L ⊃ 1
2∂φ∂φ− 1

2µ
2φ2 → scalar propagator:

i

p2 − µ2 + iǫ
,

L ⊃ −gφψ̄aΓabψb(x) → scalar, fermion vertex − igΓ,

where the index a, b runs over the four fermion components (spin up and down for fermion

and anti-fermion), so Γ is a 4× 4 matrix (natural choices are Γ = 14×4 or Γ = iγ5, where

recall γ5 = −iγ0γ1γ2γ3, and the i is there to keep L† = L, since (γ0γ5) is anti-hermitian).

Incoming fermions get a factor of ur(p), outgoing fermions get ūr(p); incoming an-

tifermions gets v̄r(p), and outgoing antifermions get vr(p). The amplitude has indices

r = 1, 2 for each external fermion, which accounts for the external fermion’s spin. For in-

ternal fermion propagators we sum over the four fermion indices, which is accomplished by

matrix multiplication of the above tinkertoy pieces, with Tr put in as appropriate. Write

the amplitude by following the arrows backwards, from the head to the tail.

N +N → N +N :

iA = −ig2

(

ūs
′

q′Γusp′ ūr
′

p′Γurp
(q − q′)2 − µ2 + iǫ

−
ūs

′

q′Γurpū
r′

p′Γusq
(q − p′)2 − µ2 + iǫ

)

.

• Attractive Yukawa potential for both ψψ → ψψ, and also ψψ̄ → ψψ̄. Recall

ANR = −i
∫

d3~re−i(~p′−~p)·~rU(~r). For ψψ → ψψ, ANR ⊃ −i(−ig)2(2m) 1
(~p−~p′)2+µ2 when

the spins are unchanged. Gives U(~r) = −g2e−µr/4πr. For ψψ̄ → ψψ̄, amplitude differs by

sign, but so does v̄v, so again get attractive potential.

Recall:

ūr(p)us(p) = −v̄r(p)vs(p) = 2mδrs, ūrvs = v̄rus = 0.

2
∑

r=1

ur(p)ūr(p) = γµpµ +m,

2
∑

r=1

vr(p)v̄r(p) = γµpµ −m.

• Example Γ = iγ5, N + φ → N + φ, simplify iA. Compute |A|2 and average over

initial spins and sum over final spins. Simplify.

iA = ig2ūr
′

p′γ5

(

/p+ q/+m

(p+ q)2 −m2 + iǫ
+

/p− /q′ +m

(p− q′)2 −m2 + iǫ

)

γ5u
r
p,

1



iA = ig2ū(r
′)(p′)q/u(r)(p)F, F ≡

[

1

2p · q + µ2 + iǫ
+

1

2p′ · q + µ2 + iǫ

]

.

|A|2 = g4F 2qµqνTr[ū(p
′)r

′

γµu(p)rū(p)rγνu(p)r
′

].

Average over initial spins and sum over final ones (often physically relevant, and it simplifies

the expression, using the completeness relations)

1
2

∑

r,r′

|A|2 = 1
2g

2F 2qµqνTr[(/p
′ +m)γµ(/p+m)γν ]

= 2g4F 2[2(p′ · q)(p · q)− p · p′µ2 +m2µ2].

• Recap: we have discussed spin 0 and spin 1/2 quantum fields. Now move up to spin

1. (Next quarter, we’ll discuss renormalizability, and note there the complications with

quantizing fields of spin greater than 1.) Examples with spin 1 include non-fundamental

(composite) fields, e.g. spin 1 mesons, and also the fundamental force carriers: the photon,

gluons, and W± and Z0. The gluons and W± are associated with non-Abelian groups,

which we’ll discuss next quarter.

• Consider a spin 1 quantum field (the ( 12 ,
1
2 ) representation of the Lorentz group),

and call it Aµ. The components of Aµ will satisfy something like a KG equation, being

massive or massless. We’ll start with the massive case first, as a warmup for the massless

case. Physically, this could be referring to the Zµ massive vector bosons of the broken

electroweak force.

For the massive vector mesons, write down the general lagrangian:

L = −1
2
(∂µA

ν∂µA
ν + a∂µA

µ∂νA
ν + bAµA

µ).

The sign is chosen so that the kinetic terms of the spatial components have the right

sign. Write the EOM:

−∂2Aν − a∂ν(∂ ·A) + bAν = 0,

and note plane wave solutions Aµ(x) = ǫνe
−ik·x solves it if k2ǫν +akν(k · ǫ)+ bǫν = 0. The

longitudinal solutions have ǫ ∝ k and have mass µ2
L = −b/(1 + a). The transverse have

mass µ2
T = −b. Can eliminate the uninteresting longitudinal solution by taking a = −1

and b 6= 0, then write Proca lagrangian in terms of Fµν = ∂µAν − ∂νAµ

L = −
1

4
FµνF

µν + 1
2µ

2AµA
µ

2


