
11/23 Lecture outline

⋆ Reading: Tong chapter 5

• Recall, the Dirac equation (iγµ∂µ−m)ψ = 0, and we considered plane wave solutions

ψ = us(p)e−ipx, ψ = vr(p)eipx,

and found that these satisfy the Dirac equation provided that p2 = m2 (good!) and

(γµpµ −m)us(p) = 0, (γµp
µ +m)vr(p) = 0.

The important properties are that these form a complete, orthogonal basis, with

ūr(p)us(p) = −v̄r(p)vs(p) = 2mδrs, ūrvs = v̄rus = 0.

2
∑

r=1

ur(p)ūr(p) = γµpµ +m,
2

∑

r=1

vr(p)v̄r(p) = γµpµ −m.

We’ll see how to evaluate Feynman diagrams involving fermions using just these relations.

These relations are basis - independent. Explicit expressions for ur and vs are less useful

and are also basis dependent.

For example, in the Dirac basis:

γ0 =

(

1 0
0 −1

)

, γi =

(

0 σi

−σi 0

)

,

in the rest frame of a massive fermion, we get

u(1) =







√
2m
0
0
0






, u(2) =







0√
2m
0
0







which can be boosted to get the solution for general pµ. For the massless case,

us(p) =

(√
p · σξs√
p · σ̄ξs

)

, vr(p) =

( √
p · σηr

−√
p · σ̄ηr

)

,

where ξ†ξ = η†η = 1, and r, s label the basis choices, e.g ξ1 =

(

1
0

)

and ξ2 =

(

0
1

)

.

• The general solution of the classical EOM is a superposition of these plane waves:
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ψ(x) =

2
∑

r=1

∫

d3p

(2π)32Ep

(

br(p)ur(p)e−ipx + cr†(p)vr(p)eipx
)

The theory is quantized by using Π0
ψ = ∂L/∂(∂0ψ) = iψ† and imposing

{ψ(t, ~x),Π(t, ~y)} = iδ(~x− ~y), i.e. {ψ(t, ~x), ψ†(t, ~y)} = δ3(~x− ~y).

If we quantize with a commutator rather than anticommutator, get a Hamiltonian that

is unbounded below, with c creating antiparticles with negative energy. Shows that spin
1
2 must have fermionic statistics, to avoid unitarity problems. This is a special case of

the general spin-statistics theorem: unitarity requires integer spin fields to be quantized

as bosons (commutators) and half-integer spin to be quantized according to Fermi-Dirac

statistics (anti-commutators). Leads to the Pauli exclusion principle.

So the coefficients in the plane wave expansion get quantized to be annihilation and

creation operators as

{br(p), bs†(p′)} = δrs(2π)32Epδ
3(~p− ~p′), {cr(p), cs†(p′)} = δrs(2π)32Epδ

3(~p− ~p′),

with all other anticommutators vanishing.

• Aside on dimensional analysis [ψ] = 3/2, [u] = [v] = 1/2, [b] = [c] = −1.

• Hamiltonian of the Dirac equation, with fermionic statistics, H = Πψψ̇ − L =

ψ̄(−i∂jγj +m)ψ, and then H =
∫

d3xH gives

: H :=

∫

d3p

(2π)32Ep
Ep(b

r†(p)br(p) + cr†(p)cr(p)),

good, br†(p) creates a spin 1/2 particle of positive energy, and cr
†

(p) creates a spin 1/2

particle of positive energy. The second term was re-ordered according to normal ordering –

the terms originally work out to have the opposite order and the opposite sign. Fermionic

statistics gives the sign above, upon normal ordering, but Bose statistics would have given

the cr†cr term with a minus sign, leading toH that is unbounded below. We need Fermionic

statistics for spin 1/2 fields to get a healthy theory.

•Do perturbation theory as before, but account for Fermi statistics, e.g. T (ψ(x1)ψ(x2)) =

−T (ψ(x2)ψ(x1)) and likewise for normal ordered products. Anytime Fermionic variables

are exchanged, pick up a minus sign (and sometimes the additional term if the anti-

commutator is non-zero). Consider in particular the propagator

{ψ(x), ψ̄(y)} = (i/∂x +m)(D(x− y)−D(y − x)).
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and the contraction

〈0|T (ψ(x)ψ̄(y))|0〉 =
∫

d4p

(2π)4
i(/p+m)

p2 −m2 + iǫ
e−ip(x−y).

Vanishes for spacelike separated points. The momentum space fermion propagator is

i

/p−m+ iǫ
.

3


