11/23 Lecture outline
* Reading: Tong chapter 5

e Recall, the Dirac equation (iy*9, —m)1 = 0, and we considered plane wave solutions
w — us(p)e—ipm, w — Ur(p)eipm7
and found that these satisfy the Dirac equation provided that p? = m? (good!) and

(VP —m)u®(p) =0,  (yup" +m)v"(p) = 0.
The important properties are that these form a complete, orthogonal basis, with

S T, S

a" (p)u’(p) = —0" (p)v*(p) = 2md"*, v = v u® = 0.

S u U (p) = pu+m, Y v (P (p) = yHpu —m.
r=1

r=1
We’ll see how to evaluate Feynman diagrams involving fermions using just these relations.
These relations are basis - independent. Explicit expressions for u” and v* are less useful
and are also basis dependent.

For example, in the Dirac basis:

0 __ 1 0 i 0 O'i
Y= 0 -1 ) Y= _O_i 0 )

in the rest frame of a massive fermion, we get

vV2m 0

(1) _ 0 @ _ | v2m
u O ) u 0
0 0

which can be boosted to get the solution for general p*. For the massless case,

e = (VETE) . = ().

1
e The general solution of the classical EOM is a superposition of these plane waves:

where £7¢ = nfn =1, and r, s label the basis choices, e.g £ = (é) and £2 = (0)
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The theory is quantized by using H?/) = 0L/0(0gtp) = it and imposing

{0, 2.0t 9)} =@ 7). ie  {pt2) (6P} =87~ 7).

If we quantize with a commutator rather than anticommutator, get a Hamiltonian that
is unbounded below, with ¢ creating antiparticles with negative energy. Shows that spin
% must have fermionic statistics, to avoid unitarity problems. This is a special case of
the general spin-statistics theorem: unitarity requires integer spin fields to be quantized
as bosons (commutators) and half-integer spin to be quantized according to Fermi-Dirac
statistics (anti-commutators). Leads to the Pauli exclusion principle.

So the coefficients in the plane wave expansion get quantized to be annihilation and

creation operators as
{07 (p),0°T(p)} = " (2m)*2E,6°(F— 7'),  {c"(p), *T (')} = 67 (2m)*2E,6° (5 — ),

with all other anticommutators vanishing.

e Aside on dimensional analysis [¢)] = 3/2, [u] = [v] = 1/2, [b] = [¢] = —1.

e Hamiltonian of the Dirac equation, with fermionic statistics, H = H¢¢ - L =
Y(—i0;97 + m)y, and then H = [ d3zH gives

H = / @;ifg&@(wpwp) + " (p)e" (),

good, b"T(p) creates a spin 1/2 particle of positive energy, and cTT(p) creates a spin 1/2
particle of positive energy. The second term was re-ordered according to normal ordering —
the terms originally work out to have the opposite order and the opposite sign. Fermionic
statistics gives the sign above, upon normal ordering, but Bose statistics would have given
the ¢"T¢” term with a minus sign, leading to H that is unbounded below. We need Fermionic
statistics for spin 1/2 fields to get a healthy theory.
e Do perturbation theory as before, but account for Fermi statistics, e.g. T (1 (z1)¢(x2)) =|}

—T(¢(x2)1p(x1)) and likewise for normal ordered products. Anytime Fermionic variables
are exchanged, pick up a minus sign (and sometimes the additional term if the anti-

commutator is non-zero). Consider in particular the propagator

{¥(2),9(y)} = (ips + m)(D(z —y) — D(y — @)).
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and the contraction

d4p 2(]{5 + m) e—ip(m—y)
(2m)% p%2 — m? + ie '

(OIT (4 (2)(y))|0) = /

Vanishes for spacelike separated points. The momentum space fermion propagator is

1
p—m+ie



