
11/2 Lecture outline

⋆ Reading for this week’s lecture: Coleman lecture notes pages 109-139.

• Recall examples of 2 → 2 processes, e.g. N +N → N +N , to O(g2)

N +N → N +N : iA = (−ig)2
(

i

t− µ2 + iǫ
+

1

u− µ2 + iǫ

)

N + N̄ → N + N̄ : iA = (−ig)2
(

i

t− µ2 + iǫ
+

1

s− µ2 + iǫ

)

where s = (p1 + p2)
2, t = (p1 − p′1)

2, u = (p1 − p′2)
2, with s+ t+ u = 4m2 (more generally,

s+ t+ u =
∑4

i=1 m
2
i ). In CM, s = 4E2, t = −2p2(1− cos θ), and u = −2p2(1 + cos θ).

• Crossing symmetry, CPT. Write 1 + 2 → 3̄ + 4̄. Take all momenta incoming,

A(p1, p2, p3, p4), with p1 + p2 + p3 + p4 = 0 and use s = (p1 + p2)
2, t = (p1 + p3)

2 and

u = (p1 + p4)
2. Note s + t + u =

∑4
n=1 m

2
n. The process 1 + 2 → 3̄ + 4̄ is kinematically

allowed for s > 4m2, t < 0, u < 0. If instead u > 4m2, it’s the process 1 + 3 → 2̄ + 4̄.

• Scattering by φ exchange leads to an attractive Yukawa potential. This was Yukawa’s

original goal, to explain the attraction between nucleons. Indeed, the t-channel term in e.g.

the above N+N scattering amplitude gives, upon using (p1−p′1)
2−µ2 = −(|~p1−~p′1|

2+µ2),

and the Born approximation1 in NRQM, ANR = −
∫
d3~re−i(~p′−~p)·~rV (~r), the attractive

Yukawa potential

V (r) =

∫
d3q

(2π)3
−(g/2m)2ei~q·~r

|~q|2 + µ2
= −

(g/2m)2

4πr
e−µr.

(The 1/(2m)2 is because we normalized the relativistic states with the extra factor of

2E ≈ 2m as compared with standard nonrelativistic normalization2. This gives Yukawa’s

explanation of the attraction between nucleons, from meson exchange. The u-channel term

is an exchange potential interaction, which exchanges the positions of the two identical

particles in addition to giving a potential. For angular momentum ℓ in a partial-wave

expansion, the exchange term differs from the direct one by a factor of (−1)ℓ.

1 Max Born, in QM, or Lord Rayleigh classically: dσ
dΩ

∼ |U(~q)|2
2 This is clear on dimensional grounds, since [g] ∼ m. More generally, write a(p) =

√
2Eâ(p)

and A =
∏

i

√
2Ei

∏
f

√
2Ef Â.
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• We saw above that the t channel term above is associated with the Yukawa potential.

The u channel term is similar. Now consider the s channel, in e.g. the N + N̄ scattering

amplitude. Using the CM relations ~p1 = −~p2 ≡ ~p and E1 = E2 =
√

p2 +m2 gives

A ∼
1

4m2 + 4p2 − µ2 + iǫ
,

so for µ < 2m the denominator is always positive, and the amplitude decreases with

increasing p2. For µ > 2m there is a pole at (p1 + p2)
2 = µ2, where the intermediate

meson goes on shell. This leads to a peak (not a pole, of course; because the intermediate

particle is unstable anyway, the denominator gets an imaginary contribution from higher

order contributions), a resonance, in the cross section. E.g. Z0 pole in e+e− → µ+µ−, but

not in e+e− → γγ.

• Solve L = 1
2∂φ

2 − 1
2m

2φ2 − J(x)φ. Using Dyson + Wick’s theorem, U(∞,−∞) =:

eO1+
1
2O2 :, where O1 = −i

∫
d4xJ(x)φ(x) andO2 = (−i)2

∫
d4x1d

4x2DF (x1−x2)J(x1)J(x2).

So O2 = α + iβ is a number, whereas O1 is an operator. Will lead to probability Pn for

creating out of the vacuum a state with n mesons given by Pn = e−|α||α|n/n!, the Poisson

distribution. You’ll work out the details in the HW assignment.

• Compute probabilities by squaring the S-maxtrix amplitudes, but have to be careful

with the delta functions, since squaring the delta functions would give nonsense.

Warmup: consider quantum mechanics, with U(t) = Te−i
∫

t

H(t)dt,

〈f |U(t)|i〉 ≈ −i〈f |Hint|i〉

∫ t

0

dteiωt,

where ω = Ef − Ei. If we take t → ∞ first, we get δ(ω) and squaring would give

nonsense. That’s because we’re asking the wrong question if we ask about probability for

a transition over all time – instead, we should ask about the rate. So keep t finite for now.

Squaring gives P (t) = 2|〈f |Hint|i〉|
2(1 − cosωt)/ω2. For t → ∞, multiply by dEfρ(Ef)

and replace (1−cosωt)/ω2 = 4 sin2( 12ωt)/ω
2 → πtδ(ω) (using

∫∞

−∞
dxx−2 sin2 x = π (hint:

sin2 x/x2 = (2− ei2x − e−i2x)/4x2 and close the contour in the correct directions)) to get

Ṗi→f = 2π|〈f |Hint|i〉|
2ρ(E).

This is “Fermi’s Golden Rule” – it was actually derived by Dirac, but Fermi used it a lot and

called it the golden rule. Another aside: Fermi and Dirac independently discovered that

spin 1/2 objects must anticommute, and Dirac generously named such objects “Fermions”.
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Naively taking t → ∞ initially would have given amplitude ∼ δ(ω), and squaring that

would give δ(ω)2, which needs to be replaced with δ(ω)2πT , and then divide by T to get

the rate. Similarly in field theory, δ(p)2 should be replaced with probability ∼ δ(p) times

phase space volume factors.

• Phase space factors. Put the system in a box of volume V . The momenta are

quantized and, as usual, there are V d3~k/(2π)3 states with ~k in the range d3~k. Continue

next time..
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