10/28 Lecture outline
* Reading for today’s lecture: Coleman lecture notes pages 103-120 (skip

parts about counterterms for now).

e Last time' Feynman rules! Each vertex gets (—ig)(27)*6*(piotal in), each internal
line gets f (2ﬂ)4 k Dp(k?), where Dp is the propagator, e.g. Dp(k?) = m Result is
(fI(S —1)i), so divide by (2m)*6*(pr — pr) to get iAy;.

If the diagram has no loops, the momentum conserving delta functions fix all internal
momenta in terms of the external ones. When the diagram has L # 0 loops, the procedure
above yields integrals over the internal momenta of the loops. (Note that if a diagram has
I internal lines and V vertices, then there are I momentum integrals, and V' momentum
conserving delta functions; one of these becomes overall momentum conservation, so there
are L = I — (V — 1) momentum integrals left to do, and L is the number of loops in the
diagram.) Any loop momentum integrals require renormalization, which we’ll discuss later
(next quarter), so for now we’ll just consider “tree-level” contributions, associated with
diagrams without loops, L = 0.

Draw some diagram examples, noting that L =1 — (V —1).

e Last time, we had some examples of 2 — 2 processes.
(1) N+ N — N+ N, to O(g?)

i(—ig)? ! 1 5@ o
9 l(pl—p’l)hu? (p1-p§)2—u2](2>5 (P1+p2=p1 = 72).
(2) N(p1) + N(p2) = N(p}) + N(ph) has

( 2+(p1—|—p2)—,u2)'
(3) N(p1) + N(p2) = ¢(p})d(ph) has

A= 0 (Gt * Gy )

(4) N(p1) + ¢(p2) = N(p)) + ¢(p3) has

iA = (—ig)? ((p1 —pZ) —m? +pi) - mz) '

—1 f d41’7'[[(1’)

Note: the 1/2! from expanding e is cancelled by a factor of 2 from ex-

changing the two vertices.



e Mandelstam variables. s = (p1 +p2)?, t = (p1 — )%, u = (p1 —ph)?, with s+t+u =
4m? (more generally, s +t +u = 2?21 m?). In CM, s = 4E?, t = —2p?(1 — cos @), and
u = —2p?(1 + cosf).

e Crossing symmetry, CPT. Write 1 + 2 — 3 4+ 4. Take all momenta incoming,
A(p1,p2,p3,p4), With p1 + pa + ps +ps = 0 and use s = (p1 + p2)?, t = (p1 + p3)?® and
w = (p1 + pa)?. Note s +t+u=>"-_ m2. The process 1 +2 — 3 + 4 is kinematically
allowed for s > 4m?, t <0, v < 0. If instead u > 4m?, it’s the process 1 + 3 — 2 + 4.

e Scattering by ¢ exchange leads to an attractive Yukawa potential. This was Yukawa’s
original goal, to explain the attraction between nucleons. Indeed, the t-channel term in e.g.
the above N + N scattering amplitude gives, upon using (p1 — p})? — u? = —(|p1 — p1|* +
1?), and the Born approximation! in NRQM, Ang = fd?’??e_i(ﬁ,_ﬁ)'FV(F), the attractive

Yukawa potential

g —(g/2m)% T (g/2m)?
R e

(The 1/(2m)? is because we normalized the relativistic states with the extra factor of
2F =~ 2m as compared with standard nonrelativistic normalization?. This gives Yukawa’s
explanation of the attraction between nucleons, from meson exchange. The u-channel term
is an exchange potential interaction, which exchanges the positions of the two identical
particles in addition to giving a potential. For angular momentum ¢ in a partial-wave

expansion, the exchange term differs from the direct one by a factor of (—1)*.

! Max Born, in QM, or Lord Rayleigh classically: 22 ~ |U(q)|?
2 This is clear on dimensional grounds, since [g] ~ m. More generally, write a(p) = v2Ea(p)

and A =[], vV2E[]; \/2E; A



