
10/28 Lecture outline

⋆ Reading for today’s lecture: Coleman lecture notes pages 103-120 (skip

parts about counterterms for now).

• Last time: Feynman rules! Each vertex gets (−ig)(2π)4δ4(ptotal in), each internal

line gets
∫

d4k
(2π)4DF (k

2), where DF is the propagator, e.g. DF (k
2) = i

k2−m2+iǫ
. Result is

〈f |(S − 1)|i〉, so divide by (2π)4δ4(pF − pI) to get iAfi.

If the diagram has no loops, the momentum conserving delta functions fix all internal

momenta in terms of the external ones. When the diagram has L 6= 0 loops, the procedure

above yields integrals over the internal momenta of the loops. (Note that if a diagram has

I internal lines and V vertices, then there are I momentum integrals, and V momentum

conserving delta functions; one of these becomes overall momentum conservation, so there

are L = I − (V − 1) momentum integrals left to do, and L is the number of loops in the

diagram.) Any loop momentum integrals require renormalization, which we’ll discuss later

(next quarter), so for now we’ll just consider “tree-level” contributions, associated with

diagrams without loops, L = 0.

Draw some diagram examples, noting that L = I − (V − 1).

• Last time, we had some examples of 2 → 2 processes.

(1) N +N → N +N , to O(g2)

i(−ig)2
[

1

(p1 − p′1)
2 − µ2

+
1

(p1 − p′2)
2 − µ2

]
(2π)4δ(4)(p1 + p2 − p′1 − p′2).

(2) N(p1) + N̄(p2) → N(p′1) + N̄(p′2) has

iA = (−ig)2
(

i

(p1 − p′1)− µ2
+

i

(p1 + p2)− µ2

)
.

(3) N(p1) + N̄(p2) → φ(p′1)φ(p
′
2) has

iA = (−ig)2
(

i

(p1 − p′1)−m2
+

i

(p1 − p′2)−m2

)
.

(4) N(p1) + φ(p2) → N(p′1) + φ(p′2) has

iA = (−ig)2
(

i

(p1 − p′2)−m2
+

i

(p1 + p2)−m2

)
.

Note: the 1/2! from expanding e−i
∫

d4xHI(x) is cancelled by a factor of 2 from ex-

changing the two vertices.
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• Mandelstam variables. s = (p1+p2)
2, t = (p1−p′1)

2, u = (p1−p′2)
2, with s+t+u =

4m2 (more generally, s + t + u =
∑4

i=1 m
2
i ). In CM, s = 4E2, t = −2p2(1 − cos θ), and

u = −2p2(1 + cos θ).

• Crossing symmetry, CPT. Write 1 + 2 → 3̄ + 4̄. Take all momenta incoming,

A(p1, p2, p3, p4), with p1 + p2 + p3 + p4 = 0 and use s = (p1 + p2)
2, t = (p1 + p3)

2 and

u = (p1 + p4)
2. Note s + t + u =

∑4
n=1 m

2
n. The process 1 + 2 → 3̄ + 4̄ is kinematically

allowed for s > 4m2, t < 0, u < 0. If instead u > 4m2, it’s the process 1 + 3 → 2̄ + 4̄.

• Scattering by φ exchange leads to an attractive Yukawa potential. This was Yukawa’s

original goal, to explain the attraction between nucleons. Indeed, the t-channel term in e.g.

the above N +N scattering amplitude gives, upon using (p1 − p′1)
2 − µ2 = −(|~p1 − ~p′1|

2 +

µ2), and the Born approximation1 in NRQM, ANR =
∫
d3~re−i(~p′

−~p)·~rV (~r), the attractive

Yukawa potential

V (r) =

∫
d3q

(2π)3
−(g/2m)2ei~q·~r

|~q|2 + µ2
= −

(g/2m)2

4πr
e−µr.

(The 1/(2m)2 is because we normalized the relativistic states with the extra factor of

2E ≈ 2m as compared with standard nonrelativistic normalization2. This gives Yukawa’s

explanation of the attraction between nucleons, from meson exchange. The u-channel term

is an exchange potential interaction, which exchanges the positions of the two identical

particles in addition to giving a potential. For angular momentum ℓ in a partial-wave

expansion, the exchange term differs from the direct one by a factor of (−1)ℓ.

1 Max Born, in QM, or Lord Rayleigh classically: dσ
dΩ

∼ |U(~q)|2
2 This is clear on dimensional grounds, since [g] ∼ m. More generally, write a(p) =

√
2Eâ(p)

and A =
∏

i

√
2Ei

∏
f

√
2Ef Â.
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