215a Homework exercises 2, Fall 2015, due Oct. 14

"Tong problem n.m" refers to exercise set n, problem m. Follow links from website.

1. Consider a complex scalar field with

$$\mathcal{L} = \partial_{\mu} \phi^{\dagger} \partial^{\mu} \phi - m^2 \phi^{\dagger} \phi$$

Define

$$\phi(x) \equiv \int \frac{d^3k}{(2\pi)^3 2\omega_k} \left(a(k)e^{-ik\cdot x} + b^{\dagger}(k)e^{ik\cdot x}\right).$$

$$\phi^{\dagger}(x) \equiv \int \frac{d^3k}{(2\pi)^3 2\omega_k} \left(a(k)^{\dagger}e^{ik\cdot x} + b(k)e^{-ik\cdot x}\right).$$

(a) Find the conjugate coordinate $\Pi(x)$ to $\phi(x)$.

(b) Impose the canonical equal-time commutation relation $[\phi(\vec{x},t),\Pi(\vec{y},t)] = i\delta^3(\vec{x}-\vec{y})$ and show this implies that $[a(k), a^{\dagger}(k')] = [b(k), b^{\dagger}(k)] = (2\pi)^3 2\omega_k \delta^3(\vec{k}-\vec{k'})$, with all other commutators vanishing.

(c) Recall from HW1 that there is a conserved current, $j^{\mu}(x)$ with $\partial_{\mu}j^{\mu} = 0$, corresponding to the $\phi \to e^{i\alpha}\phi$ symmetry. Write the corresponding charge $Q = \int d^3x j^0$ as $Q = \int d^3k \dots$, where \dots is in terms of things like a(k) and b(k). Write Q as a normal ordered expression, so $Q|0\rangle = 0$.

(d) Verify that $a^{\dagger}(k)|0\rangle$ and $b^{\dagger}(k)|0\rangle$ are eigenstates of Q. What are their eigenvalues?

- 2. Consider the KG theory $\mathcal{L}_{KG} = \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi \frac{1}{2} m^2 \phi^2$.
 - (a) Let $|p\rangle$ be the one-particle state $a^{\dagger}(p)|0\rangle$. Show that

$$\langle 0|\phi(x)|p\rangle = e^{-ip\cdot x}.$$

(b) Using the expressions given in lecture for H and \vec{P} , show that

$$[P^{\mu}, \phi(x)] = -i\partial^{\mu}\phi(x).$$

- 3. Tong problem set 2, exercise 7 (non-relativistic theory).
- 4. Tong problem set 2, exercise 9 (Wick's theorem check).