10/29 Lecture outline
* Reading for today’s lecture: Luke p. 65-80; Tong p. 35-41.

e Last time: some amplitudes in our nucleon 4+ meson toy model, via
(F1(S = Dli) = (f1Te T EH @) = i 2m) 459 (o — o).

Examples: meson decay ¢ — N + N has A(¢p — N + N) = —g + O(g%),
N+ N = N+ N, to O(¢?):

A= (o) {(pl —p’i)2 2 —p’i)Q —/ﬂ} '

Explicitly, in the CM frame, p; = (v/p? +m?,pe) and py = (\/p> +m?,—pe), p}| =
(V/p? + m?2,pe’), py = (\/p? + m?, —pe’), where €- € = cosf, and get
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2p2(1 — cos0) + p? + 2p%(1 + cosB) + p?

A(N+N—>N—|—N):g2< )+O(g4)
As we’ll discuss, scattering by ¢ exchange leads to an attractive Yukawa potential.

e Recall how we got the above answer in the previous lecture. We expand
exp(—ig [ d*zH) and compute the time ordered expectation values using Wick’s theo-
rems, with the contractions giving factors of D (21 — ). Doing this, we get a [ d*z for
each factor of —ig and a d*k for each internal contraction. Draw a picture in position
space. Let E be the number of external lines, i.e. the number of incoming + outgoing
particles. (We saw last time that [A] = 4 — E.) It is easier to think about everything in
momentum space. Then the [ d*z for each vertex gives a (27)%6* (Drotal, in)-

e Feynman rules! Each vertex gets (—ig)(27)%6*(piotal in), each internal line gets
1l (3;1;4 Dr(k?), where Dp is the propagator, e.g. Dp(k?) = Result is (f|(S —
1)]i), so divide by (2m)%6*(pr — pr) to get iAy;.

If the diagram has no loops, the momentum conserving delta functions fix all internal

k2 — mz—l—ze

momenta in terms of the external ones. When the diagram has L # 0 loops, the procedure
above yields integrals over the internal momenta of the loops. (Note that if a diagram has
I internal lines and V vertices, then there are I momentum integrals, and V' momentum
conserving delta functions; one of these becomes overall momentum conservation, so there
are L = I —V — 1 momentum integrals left to do, and L is the number of loops in the

diagram.) Any loop momentum integrals require renormalization, which we’ll discuss later
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(next quarter), so for now we’ll just consider “tree-level” contributions, associated with
diagrams without loops, L = 0.

e More examples:

(1) N(p1) + N(p2) = N(ph) + N(ph) has

iA = (—ig)? <(p1 _pz/l) 2 +p22) - MQ) .

(2) N(p1) + N(p2) — ¢(p})¢(ph) has

A (—ia)? L . :
iA = (—ig) <(p1_p’1)—m2+(p1—p/2>—m2)

(3) N(p1) + ¢(p2) = N(pi) + &(p3) has

A (—ia)? L ! :
iA = (—ig) <(p1_p’2)—m2+(p1+p2>—m2)

e Mandelstam variables. s = (p1 +p2)?, t = (p1 —p})%, u = (p1 —ph)?, with s+t+u =
4m? (more generally, s +t +u = 2?21 m?2). In CM, s = 4E?, t = —2p?(1 — cos @), and
u = —2p?(1 + cosf).

e Crossing symmetry, CPT. Write 1 + 2 — 3 4+ 4. Take all momenta incoming,
A(p1,p2,p3,p4), With p1 + pa + ps +ps = 0 and use s = (p1 + p2)?, t = (p1 + p3)? and
u= (p1 +ps)?. Notes+t+u= Zizl m?2. The process 1 + 2 — 3 + 4 is kinematically
allowed for s > 4m?, t <0, v < 0. If instead u > 4m?, it’s the process 1 + 3 — 2 + 4.



