
10/29 Lecture outline

⋆ Reading for today’s lecture: Luke p. 65-80; Tong p. 35-41.

• Last time: some amplitudes in our nucleon + meson toy model, via

〈f |(S − 1)|i〉 = 〈f |Te−i
∫

d4xHI(x)|i〉 ≡ iAfi(2π)
4δ(4)(pf − pi).

Examples: meson decay φ → N + N̄ has A(φ → N + N̄) = −g +O(g3),

N +N → N +N , to O(g2):

A = (−ig)2
[

1

(p1 − p′1)
2 − µ2

+
1

(p1 − p′2)
2 − µ2

]
.

Explicitly, in the CM frame, p1 = (
√
p2 +m2, pê) and p2 = (

√
p2 +m2,−pê), p′1 =

(
√
p2 +m2, pê′), p′2 = (

√
p2 +m2,−pê′), where ê · ê′ = cos θ, and get

A(N +N → N +N) = g2
(

1

2p2(1− cos θ) + µ2
+

1

2p2(1 + cos θ) + µ2

)
+O(g4)

As we’ll discuss, scattering by φ exchange leads to an attractive Yukawa potential.

• Recall how we got the above answer in the previous lecture. We expand

exp(−ig
∫
d4xH) and compute the time ordered expectation values using Wick’s theo-

rems, with the contractions giving factors of DF (x1 − x2). Doing this, we get a
∫
d4x for

each factor of −ig and a d4k for each internal contraction. Draw a picture in position

space. Let E be the number of external lines, i.e. the number of incoming + outgoing

particles. (We saw last time that [A] = 4 − E.) It is easier to think about everything in

momentum space. Then the
∫
d4x for each vertex gives a (2π)4δ4(ptotal, in).

• Feynman rules! Each vertex gets (−ig)(2π)4δ4(ptotal in), each internal line gets
∫

d4k
(2π)4

DF (k
2), where DF is the propagator, e.g. DF (k

2) = i
k2−m2+iǫ

. Result is 〈f |(S −

1)|i〉, so divide by (2π)4δ4(pF − pI) to get iAfi.

If the diagram has no loops, the momentum conserving delta functions fix all internal

momenta in terms of the external ones. When the diagram has L 6= 0 loops, the procedure

above yields integrals over the internal momenta of the loops. (Note that if a diagram has

I internal lines and V vertices, then there are I momentum integrals, and V momentum

conserving delta functions; one of these becomes overall momentum conservation, so there

are L = I − V − 1 momentum integrals left to do, and L is the number of loops in the

diagram.) Any loop momentum integrals require renormalization, which we’ll discuss later
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(next quarter), so for now we’ll just consider “tree-level” contributions, associated with

diagrams without loops, L = 0.

• More examples:

(1) N(p1) + N̄(p2) → N(p′1) + N̄(p′2) has

iA = (−ig)2
(

i

(p1 − p′1)− µ2
+

i

(p1 + p2)− µ2

)
.

(2) N(p1) + N̄(p2) → φ(p′1)φ(p
′
2) has

iA = (−ig)2
(

i

(p1 − p′1)−m2
+

i

(p1 − p′2)−m2

)
.

(3) N(p1) + φ(p2) → N(p′1) + φ(p′2) has

iA = (−ig)2
(

i

(p1 − p′2)−m2
+

i

(p1 + p2)−m2

)
.

• Mandelstam variables. s = (p1+p2)
2, t = (p1−p′1)

2, u = (p1−p′2)
2, with s+t+u =

4m2 (more generally, s + t + u =
∑4

i=1 m
2
i ). In CM, s = 4E2, t = −2p2(1 − cos θ), and

u = −2p2(1 + cos θ).

• Crossing symmetry, CPT. Write 1 + 2 → 3̄ + 4̄. Take all momenta incoming,

A(p1, p2, p3, p4), with p1 + p2 + p3 + p4 = 0 and use s = (p1 + p2)
2, t = (p1 + p3)

2 and

u = (p1 + p4)
2. Note s + t + u =

∑4
n=1 m

2
n. The process 1 + 2 → 3̄ + 4̄ is kinematically

allowed for s > 4m2, t < 0, u < 0. If instead u > 4m2, it’s the process 1 + 3 → 2̄ + 4̄.
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