10/22 Lecture outline

* Reading for today's lecture: Luke p. 65-80; Tong p. 35-41.

• Recall the contraction $C(\phi(x)\phi(y))$ (denote it properly in class) is $T(\phi(x)\phi(y)) - N(\phi(x)\phi(y)) = \langle T\phi(x)\phi(y) \rangle = D_F(x-y) = \int \frac{d^4p}{2\pi^4} (i/k^2 - m^2 + i\epsilon)e^{-ik(x-y)}.$

• Last time: Dyson's formula. Compute scattering S-matrices. Consider asymptotic in and out states, with the interaction turned off. Time evolve, with the interaction smoothly turned on and off in the middle.

$$|\psi(t)\rangle = Te^{-i\int d^4x \mathcal{H}_I} |i\rangle.$$

Derive it by solving $i \frac{d}{dt} |\psi(t)\rangle = H_I(t) |\psi(t)\rangle$ iteratively:

$$|\psi(t)\rangle = |i\rangle + (-i)\int_{-\infty}^{t} dt_1 H_I(t_1)|\psi(t_1)\rangle$$
$$|\psi(t_1)\rangle = |i\rangle + (-i)\int_{-\infty}^{t_1} dt_2 H_I(t_2)|\psi(t_2)\rangle$$

etc where $t_1 > t_2$, and then symmetrize in t_1 and t_2 etc., which is what the T time ordering does.

• Now use Wick's theorem:

$$T(\phi_1 \dots \phi_n) =: \phi_1 \dots \phi_n : + \sum_{contractions} : \phi_1 \dots \phi_n :$$
$$=: e^{\frac{1}{2} \sum_{i,j=1}^n C(\phi_i \phi_j) \frac{\partial}{\partial \phi_i} \frac{\partial}{\partial \phi_j}} \phi_1 \dots \phi_n$$

(where C is the contraction symbol) to get rid of the time ordered products.

Prove Wick's theorem by iteration: define the RHS as $W(\phi_1 \dots \phi_n)$ and we assume $T(\phi_2 \dots \phi_n) = W(\phi_2 \dots \phi_n)$ and want to prove then that $T(\phi_1 \dots \phi_n) = W(\phi_1 \dots \phi_n)$. WLOG, take $t_1 > t_2 \dots t_n$ so $T(\phi_1 \dots \phi_n) = \phi_1 T(\phi_2 \dots \phi_n) = \phi_1 W(\phi_2 \dots \phi_n) = \phi_1^- W + W\phi_1^+ + [\phi_1^+, W]$. The first two terms are normal ordered and give all contractions not involving ϕ_1 , while the last gives all normal ordered contractions involving ϕ_1 .

So note that

$$\langle T(\phi_1 \dots \phi_n) \rangle \begin{cases} 0 & \text{for } n \text{ odd} \\ \sum_{\text{fullycontracted}} & \text{for } n \text{ even.} \end{cases}$$

• Thereby compute probability amplitude for a given process

$$\langle f|(S-1)|i\rangle = \langle f|Te^{-i\int d^4x \mathcal{H}_I(x)}|i\rangle \equiv i\mathcal{A}_{fi}(2\pi)^4 \delta^{(4)}(p_f - p_i).$$

The initial states have momenta $p_1 \dots p_n$ and the final states have momenta $q_1 \dots q_m$. Need to strip off the momentum conserving delta function to get the amplitude.

• Look at some examples, and connect with Feynman diagrams. As a first, simple example consider the above theory, with $H_{int} = \int d^3x g \phi \psi^{\dagger} \psi$. Use $\phi \sim a + a^{\dagger}$ for "mesons," $\psi \sim b + c^{\dagger}$, and $\psi^{\dagger} \sim b^{\dagger} + c$. We'll say that b annihilates a nucleon N and c^{\dagger} creates an anti-nucleon \bar{N} . Conservation law, conserved charge $Q = N_b - N_c$.

Examples of states:

$$|\phi(p)\rangle = a^{\dagger}(p)|0\rangle, \qquad |N(p)\rangle = b^{\dagger}(p)|0\rangle, \qquad |\bar{N}(p)\rangle = c^{\dagger}(p)|0\rangle.$$

Note then e.g.

$$\langle 0|\phi(x)|\phi(p)\rangle = e^{-ip\cdot x}, \qquad \langle 0|\psi(x)|N(p)\rangle = e^{-ip\cdot x}, \qquad \langle 0|\psi^{\dagger}(x)|N(p)\rangle = 0.$$

Example: meson decay. $|i\rangle = a^{\dagger}(p)|0\rangle$, $|f\rangle = b^{\dagger}(q_1)c^{\dagger}(q_2)|0\rangle$. Compute $\langle f|S|i\rangle = -ig(2\pi)^4 \delta^4(p-q_1-q_2)$ to $\mathcal{O}(g)$, i.e. $\mathcal{A} = -g$. Probability $\sim g^2$.

Comment: draw pictures to illustrate a $\sim g^3$ correction, with 1 loop. In general, amplitudes scale like $(g^2/16\pi^2)^L$ where L is the number of loops. But we'll see that loops lead to divergent momenta integrals, eg. $\int^{\Lambda} d^4k/k^2 - m^2 \sim \Lambda^2$. How to handle this will be deferred to next quarter...